吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 1172-1178.

• • 上一篇    下一篇

在线字典学习算法下低照度图像平滑去噪方法

董 维    

  1. 西北大学现代学院新媒体艺术学院,西安710130
  • 收稿日期:2025-04-11 出版日期:2025-09-28 发布日期:2025-11-20
  • 作者简介:董维(1983— ), 男, 辽宁大连人, 西北大学现代学院讲师, 主要从事人工智能与影像技术研究, (Tel)86-18602927176 (E-mail)mucao698@163. com。
  • 基金资助:
    陕西省社会科学基金资助项目(2023J004) 

Smooth Denoising Method for Low Light Images under Online Dictionary Learning Algorithm

DONG Wei   

  1. School of New Media Arts, Modern College of Northwest University, Xi’an 710130, China
  • Received:2025-04-11 Online:2025-09-28 Published:2025-11-20

摘要: 针对在低照度图像中,有效信号与随机噪声在变换域中呈现相似的稀疏分布,去噪后的图像容易出现阶梯效应或伪边缘,进而产生噪声伪影,降低图像质量的问题,提出一种在线字典学习算法下低照度图像平滑去噪方法。 对低照度图像实施灰度变换,降低图像随机噪声。 设计一种自适应低照度图像块划分策略,根据灰度变换后图像局部亮度信息和纹理特征,动态调整图像块大小,得到图像细节和结构信息。 创建在线字典学习模型, 稀疏表示划分后的图像块,通过实时更新字典动态捕捉噪声和细节特征的时变特性,自适应地分离有效信号与噪声,在保留信号结构的同时抑制噪声伪影,解决低照度图像中相似稀疏分布导致的阶梯效应和伪边缘问题, 实现低照度图像平滑去噪。 实验结果表明,所提方法具备极强的鲁棒性,能有效抑制低照度图像噪声, 图像峰值信噪比和结构相似性得到显著提高。

关键词: 在线字典学习, 低照度图像, 平滑去噪, 灰度变换, 图像块

Abstract: In low light images, the effective signal and random noise exhibit a similar sparse distribution in the transform domain. The denoised image is prone to staircase effects or pseudo edges, which can lead to noise artifacts and reduce the quality of the image. Therefore, an online dictionary learning algorithm is proposed to smooth and denoise low light images, and to improve the visual effect of the images. The grayscale transformation on low light images is Implemented to reduce random noise in the images. An adaptive low light image block partitioning strategy is designed which dynamically adjusts the size of image blocks based on local brightness information and texture features after grayscale transformation, to obtain image details and structural information. An online dictionary learning model is created. It sparsely represents partitioned image blocks, dynamically captures the time-varying characteristics of noise and detail features through real-time dictionary updates, adaptively separates effective signals and noise, suppresses noise artifacts while preserving signal structure, solves the problems of staircase effect and pseudo edges caused by similar sparse distribution in low light images, and achieves smooth denoising of low light images. The experimental results show that the proposed method has strong robustness and can effectively suppress low light image noise. The peak signal-to-noise ratio and structural similarity of the image are significantly improved. 

Key words: online dictionary learning, low light image, smooth denoising, grayscale transformation, image block

中图分类号: 

  • TP391