吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (5): 988-998.

• • 上一篇    下一篇

基于 GNN 和 RL 的电能计量设备检测调度问题求解 

杨思洁,杨依睿,刘 思,陈欢军,徐 韬,孔德政,窦全胜   

  1. 国网浙江省电力有限公司营销服务中心,杭州311121
  • 收稿日期:2024-12-01 出版日期:2025-09-28 发布日期:2025-11-19
  • 作者简介:杨思洁(1991— ), 女, 杭州人, 国网浙江省电力有限公司工程师, 主要从事电能计量、 人工智能研究, (Tel)86- 13396457969(E-mail)13396457969@163. com。
  • 基金资助:
    国家自然科学基金资助项目(62341605); 国家电网公司科技基金资助项目(5700-202219210A-1-1-ZN) 

Solving Algorithms of Detection Scheduling for Electric Metering Equipment Based on GNN and RL

YANG Sijie, YANG Yirui, LIU Si, CHEN Huanjun, XU Tao, KONG Dezheng, DOU Quansheng   

  1. Marketing Service Center, State Grid Zhejiang Electric Power Company Limited, Hangzhou 311121, China
  • Received:2024-12-01 Online:2025-09-28 Published:2025-11-19

摘要: 针对传统调度方法在电能计量设备检测调度中存在的稳定性不足、泛化能力弱及受设备配置影响等问题, 提出了GNN-RL(Graph Neural Network-Reinforcement Learning)检测调度模型。 该模型将调度问题视为马尔可夫决策过程,首先构建电能计量设备检测调度的图结构模型,然后通过改进的图神经网络提取问题特征并传递给动作选择网络以生成决策,最终将决策结果分配给机器执行。 调度结束后,模型收集反馈信息以训练强化学习模块中的调度策略。 在训练阶段, GNN-RL优化了消息传递机制, 采用与调度目标紧密相关的损失函数,并动态调整学习率。 同时,还引入多任务学习框架处理任务分配和时间调度。 实验结果表明,GNN-RL 在寻优能力、求解精度和稳定性方面优势明显,对电能计量设备检测调度问题的求解具有显著优势,明显提高了问题求解的效率和可靠性。 

关键词: 电能计量, 图神经网络, 强化学习, 析取图, 车间调度

Abstract: Aiming at the problems of insufficient stability, weak generalization ability, and the influence of equipment configuration in the traditional scheduling method for the detection and scheduling of power metering equipment, a detection and scheduling model named GNN-RL(Graph Neural Network-Reinforcement Learning) is proposed. The model treats the scheduling problem as a Markov decision process. Firstly, the graph structure model of electric energy metering equipment detection and scheduling is constructed. Then, the problem features are extracted through the improved graph neural network and passed to the action selection network to generate decisions. After the scheduling, the model collects feedback information to train the scheduling policy in the reinforcement learning module. In the training phase, GNN-RL optimizes the message passing mechanism, employs a loss function closely related to the scheduling objective, and dynamically adjusts the learning rate. A multi-task learning framework is introduced to deal with task allocation and time scheduling. The experimental results show that GNN-RL has obvious advantages in optimization ability, solution accuracy, and stability, and has great advantages in solving the detection and scheduling problem of energy metering equipment, which significantly improves the efficiency and reliability of problem solving.

Key words: electric metering, graph neural networks, reinforcement learning, disjunctive graph, job shop scheduling

中图分类号: 

  • TP2