吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1214-1221.

• • 上一篇    下一篇

面向OCC系统的目标LED阵列检测算法

闫晓明, 尹孝萱2 , 籍风磊1 , 王勇1 , 王铭阳1   

  1. 1. 吉林大学 通信工程学院, 长春 130012; 2. 国网辽宁省电力有限公司 沈阳供电公司, 沈阳 110811
  • 收稿日期:2025-07-05 出版日期:2025-12-08 发布日期:2025-12-08
  • 通讯作者: 王铭阳(1999— ), 女, 吉林省吉林市人, 吉林大学助理工程师, 主要从事无线通信网资源分配方案研究, (Tel)86-13404680288 (E-mail)364566007@ qq. com。 E-mail:364566007@ qq. com。
  • 作者简介:闫晓明(1967— ), 男, 吉林四平人, 吉林大学高级工程师, 主要从事通信终端设备研发研究, ( Tel) 86-13604401953(E-mail)txjs@ sohu. com
  • 基金资助:
    吉林省科技发展计划重点研发基金资助项目(20200401122GX); 吉林大学实验技术重点基金资助项目(SYXM2024a009)

Target Led Array Detection Algorithm for OCC System

YAN Xiaoming1, YIN Xiaoxuan2, JI Fenglei1, WANG Yong1, WANG Mingyang1   

  1. 1. College of Communication Engineering, Jilin University, Changchun 130012, China;2. Shenyang Power Supply Company, State Grid Liaoning Electric Power Supply Company Limited, Shenyang 110811, China
  • Received:2025-07-05 Online:2025-12-08 Published:2025-12-08

摘要: 针对目前基于深度学习的 OCC(Optical Camera Communication)系统目标 LED(Light Emitting Diode)阵列检测算法网络结构复杂、参数量大、计算复杂度高的问题, 提出了一种基于 Effeps-YOLOv11(Effeps-You Only Look Onceversion 11)的LED阵列检测算法。在 Effeps-YOLOv11 特征提取的主干网中采用轻量型 EfficientNetV2 网络平衡网络宽度、深度、图像分辨率; 使用 ECA(Efficient Channel Attention)注意力机制替换原有的复杂注意力模块, 简化了网络结构; 设计使用轻量级 C3PC(C3 Part Convolution)模块, 降低计算复杂度; 采用 Shape_IoU 损失函数提高边界框的定位精度, 提升 LED 阵列的定位准确性, 为正确解码提供了先期保障。依托 OCC 系统实验平台实现数据的采集, 建立完成训练所需数据集。实验结果表明, 在室外复杂环境下该 Effeps-YOLOv11 算法能满足 OCC 系统目标 LED 阵列检测任务需求。

关键词:

Abstract:

We addresses the current problems of complex network structure, large number of parameters, and high computational complexity of the target LED( Light Emitting Diode) array detection algorithm is studied based on deep learning in the OCC(Optical Camera Communication) system. A detection algorithm for LED arrays based on Effeps-YOLOv11 is proposed. In the backbone network of Effeps-YOLOv11 (Effeps-You Only Look Once version 11) feature extraction, a lightweight EfficientNetV2 network is adopted to balance the network width, depth, and image resolution. The original complex attention module is replaced with the ECA (Efficient Channel Attention ) attention mechanism to simplify the network structure. A lightweight C3PC ( C3 Part Convolution) module is designed to reduce the computational complexity. And the Shape_IoU loss function is used to improve the positioning accuracy of the bounding box and enhance the accuracy of LED array positioning,providing an early guarantee for correct decoding. Currently, no public dataset has been established in the field of target LED array in the OCC system. The experiments are based on the OCC system experimental platform to collect data and establish the required training dataset. The experimental results show that the Effeps-YOLOv11 algorithm proposed in this paper can meet the requirements of the target LED array detection task in complex outdoor environments.

Key words:

中图分类号: 

  • TP391