吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (6): 1352-1362.

• • 上一篇    下一篇

基于改进RT-DETR的原油库指针式仪表检测方法

张 岩1 , 张林军, 汪靖哲, 李新月2 , 张永雪1 , 魏子心1   

  1. 1. 东北石油大学 计算机与信息技术学院, 黑龙江 大庆 163318;2. 中海油田服务有限公司 技术事业部, 河北 廊坊 065201
  • 收稿日期:2024-10-22 出版日期:2025-12-08 发布日期:2025-12-08
  • 作者简介:张岩(1980— ), 男, 辽宁大连人, 东北石油大学副教授, 博士, 主要从事数字图像处理、 机器学习、 计算机视觉等研究, (Tel)86-13644598086(E-mail)zhangyuanyan_309@ 126. com。
  • 基金资助:
    东北石油大学特色科研团队“智慧油田信息处理创新团队冶基金资助项目(2023TSTD-04)

Detection Method of Pointer Instrument in Crude Oil Depot Based on Improved RT-DETR

ZHANG Yan1, ZHANG Linjun1, WANG Jingzhe1, LI Xinyue2, ZHANG Yongxue1, WEI Zixin1   

  1. 1. School of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, China;2. Technology Division, China Oilfield Services Limited, Langfang 065201, China
  • Received:2024-10-22 Online:2025-12-08 Published:2025-12-08

摘要:

针对在原油库较为复杂的环境下, 受不同的外界干扰因素的影响和现有硬件设备资源有限的限制, 导致仪表定位检测时模型的精度低、计算复杂度高, 难以推广应用的问题, 提出了一种以 RT-DETR(Real-Time Detection Transformer)为基础网络的原油库指针式仪表定位方法。首先, 引入 FasterNet 网络对仪表输入图像的部分通道进行特征提取, 模型的参数量和计算复杂度明显减小; 其次, 引入 HiLo 注意力模块, 通过两条路径分别对指针与刻度细节区域和表盘平滑区域进行特征选择, 增强了模型对仪表关键特征的提取能力; 最后,为了增强多尺度特征融合的能力, 充分利用仪表的特征信息, 引入基于上下文信息特征融合模块(CGFM:Context-Guide Fusion Module), 进一步提升模型的鲁棒性。实验结果表明, 仪表的检测精度达到了 97. 6% ,模型的参数量为 10. 91 MByte, 相较于 YOLO(You Only Look Once)目标检测模型, 具有很大的优势。

关键词:

Abstract:

In the complex environment of crude oil depot, due to the influence of different external interference factors and the limited resources of existing hardware equipment, the accuracy of the model in instrument positioning is low and the computational complexity is high, which is difficult to be popularized and applied.Aiming at this problem, a pointer instrument positioning method for crude oil depot is proposed based on RT-DETR(Real-Time Detection Transformer) network. Firstly, the FasterNet network is introduced to extract the features of partial channels of the input image of the instrument, the parameters and computational complexity of the model are significantly reduced. Secondly, the HiLo attention module is introduced to select the feature of the pointer and scale detail area and the dial smooth area through two paths, which enhances the model's ability to extract the key features of the instrument. Finally, in order to enhance the ability of multi-scale feature fusion and make full use of the feature information of the instrument, the CGFM (Context-Guide Fusion Module) is introduced to further improve the robustness of the model. Experiments show that the detection accuracy of the instrument reaches 97. 6 % , and the parameter quantity of the model is 10. 91 MByte. Compared to the target detection model, it has great advantages.

Key words:

中图分类号: 

  • TP391