吉林大学学报(信息科学版) ›› 2017, Vol. 35 ›› Issue (6): 650-655.

• 论文 • 上一篇    下一篇

甲状腺结节超声图像多特征融合及识别

王 昕, 李 亮, 尹小童, 李梦烁, 曾朝伟, 艾勇鑫   

  1. 长春工业大学 计算机科学与工程学院, 长春 130012
  • 收稿日期:2017-04-05 出版日期:2017-12-29 发布日期:2018-03-14
  • 作者简介: 王昕(1972— ), 女, 辽宁大连人, 长春工业大学副教授, 博士, 硕士生导师, 主要从事图像处理与机器视觉研究, (Tel)86-13756021657(E-mail)wangxin315@ ccut. edu. cn。
  • 基金资助:
    吉林省教育厅“十二五冶 科学技术研究基金资助项目(2014136); 国家级大学生创新创业训练计划基金资助项目(201710190041)

Multiple Feature Fusion and Recognition of Thyroid Nodule Ultrasound Image

WANG Xin, LI Liang, YIN Xiaotong, LI Mengshuo, ZENG Chaowei, AI Yongxin   

  1. College of Computer Science and Engineering, Changchun Institute of Technology, Changchun 130012, China
  • Received:2017-04-05 Online:2017-12-29 Published:2018-03-14

摘要: 为更加精确地判别甲状腺结节的良恶性, 提出基于改进的 CLBP(Completed Local Binary Pattern)模型和
GLCM(Gray Level Co-occurrence Matrix)模型相结合的纹理特征提取算法。 首先在传统的 CLBP 模型中引入局部
方差信息, 使 CLBP 算子对局部纹理特征的描述更加精细; 然后与 GLCM 模型描述的全局纹理特征相融合; 最
后结合纵横比、 圆形度、 紧致度等形状特征并将其输入 SVM(Support Vector Machine)分类器。 为进一步提高识
别率, 同时给出基于粒子群算法与网格搜索算法相结合的 SVM 参数优化算法, 以提高识别率。 对比实验结果
表明, 该算法提取的特征用于分类识别时具有更高的识别率, 且提出的参数寻优算法相对于传统寻优算法效率
更高。

关键词:  甲状腺结节识别, CLBP 模型, 参数寻优, GLCM 模型, 支持向量机

Abstract: In order to distinguish the benign or malignant thyroid nodules more accurately, we propose the
texture feature extraction algorithm based on improved CLBP (Completed Local Binary Pattern) model and
GLCM (Gray Level Co-occurrence Matrix) model. Firstly, the local variance information is introduced into the
traditional CLBP model to make the CLBP operator describe the local texture features more precisely. Then, it
is combined with the global texture features described by the GLCM model. Finally, the shape features such as
aspect ratio, roundness and compactness are combined and input to the SVM (Support Vector Machine)
classifier. In order to further improve the recognition rate, the SVM parameter optimization algorithm based on
particle swarm optimization combining with grid searching is proposed. The experimental results show that the
feature extracted by the algorithm presented in this paper has higher recognition rate for classification and
recognition, and the proposed parameter optimization algorithm is more efficient than the traditional ones.

Key words: gray level co-occurrence matrix (GLCM) model,  thyroid nodules recognition, parameter optimization, support vector machine, completed local binary pattern ( CLBP ) model

中图分类号: 

  •