吉林大学学报(信息科学版) ›› 2018, Vol. 36 ›› Issue (6): 688-693.
孙慧a,卢爽b,齐妙b
SUN Huia,LU Shuangb,QI Miaob
摘要: 为了构建能反映高维数据本质结构的高质量图,提出了一种新颖的降维方法———基于自适应图的降维方法( DRAG: Dimensionality Reduction based on Adaptive Graphs) 。与其他传统的基于图的降维方法相比,提出的DRAG 避免了传统k 近邻或ε 球准则构图策略中的参数选择问题,考虑了数据的局部信息和噪声,能自适应地构建稀疏的最优图结构,并将其结合在经典的LPP( Locality Preserving Projection) 模型中,学习能有效刻画高维数据本征结构的投影矩阵,从而实现降维的目的。为了评估算法的有效性和可行性,在4 个标准的图像数据库( CMU PIE,Extended YaleB,ORL 和COIL 20) 分别进行了分类与聚类实验,实验结果表明,所提出的方法在分类识别率和聚类准确率上都优于其他对比方法。
中图分类号: