吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 288-295.

• • 上一篇    下一篇

基于双向多注意力图卷积的行程时间预测方法

邢 雪, 唐 磊   

  1. 吉林化工学院 信息与控制工程学院, 吉林 吉林 132000
  • 收稿日期:2024-06-13 出版日期:2025-04-08 发布日期:2025-04-10
  • 通讯作者: 唐磊(1999— ), 男, 重庆人, 吉林化工学院硕士研究生, 主要从事人工智能理论的智能交通关键技术研究, (Tel)86-17623531394(E-mail)tanglmayday@ 163. com。 E-mail:tanglmayday@ 163. com.
  • 作者简介:邢雪(1983— ), 女, 吉林省吉林市人, 吉林化工学院副教授, 博士, 硕士生导师, 主要从事人工智能理论的智能交通关键技术研究, (Tel)86-15804326516(E-mail) xingx@ jlict. edu. cn
  • 基金资助:
    吉林省教育厅产业化培育基金资助项目(JJKH20230306CY); 吉林省科技发展计划基金资助项目(20210101416JC)

Travel Time Prediction Method Based on Bidirectional Multi-Attention Graph Convolution

XING Xue, TANG Lei   

  1. College of Information and Control Engineering, Jilin Institute of Chemical Technology, Jilin 132000, China
  • Received:2024-06-13 Online:2025-04-08 Published:2025-04-10

摘要: 针对如何高效挖掘交通预测中时空信息的问题, 提出了一种基于双向多注意力时空图卷积的车辆行程时间预测方法。 为提取路网的空间依赖, 通过构造基于马尔科夫链的流量转移矩阵, 提取路网中的双向交通流转移关系, 并结合图卷积学习图网络中的空间依赖关系, 利用引入注意力机制获取交通转移流量图中的局部与全局特征依赖, 最后使用多层感知机将各个特征融合得到行程时间的最终预测结果。 选择宣城路网交通数据进行模型验证试验, 结果表明, 与基线模型 STGCN( Spatio-Temporal Graph Convolutional Networks)、 ASTGCN
(Attention Based Spatial-Temporal Graph Convolutional Networks)、 A3T-GCN(Attention Temporal Graph Convolutional Network)相比, 所提模型的均方根误差(RMSE: Root Mean Square Error)分别降低了 7. 6% 、3. 7% 、9% , 表明所提出的模型在提高预测准确性方面具有显著效果。

关键词: 行程时间预测, 图注意力, 时空图卷积, 马尔科夫链, 深度学习

Abstract: To address the challenge of efficiently mining spatiotemporal information for traffic prediction, a novel vehicle travel time prediction method is proposed based on bidirectional multi-attention spatiotemporal graph convolution. To extract the spatial dependencies within the road network, a traffic transfer matrix is constructed using a Markov chain approach, which captures the bidirectional traffic flow transfer relationships. Graph convolution is employed to learn the spatial dependencies within the graph network. Subsequently, an attention mechanism is utilized to capture both local and global temporal features within the traffic flow map. Finally, a MLP ( Multi-Layer Perceptron) is used to forecast travel times, producing the final prediction results. The Xuancheng road network traffic data is selected for model validation. The results demonstrate that the proposed model reduces the RMSE (Root Mean Square Error) by 7. 6% , 3. 7% , and 9% , respectively, compared to baseline models such as STGCN( Spatio-Temporal Graph Convolutional Networks), ASTGCN(Attention Based Spatial-Temporal Graph Convolutional Networks), and A3T-GCN ( Attention Temporal Graph Convolutional Network). This significant reduction in RMSE indicates that this model substantially improves prediction accuracy, highlighting its effectiveness in capturing and utilizing spatiotemporal information for more precise traffic predictions.

Key words: travel time prediction, figure attention, spatio temporal graph convolution, markov chain, deep , learning

中图分类号: 

  • TP183