吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 309-316.

• • 上一篇    下一篇

基于HHT算法的呼吸机运行状态智能监测方法

张 朝   

  1. 首都医科大学 附属北京妇产医院, 北京 100026
  • 收稿日期:2023-11-16 出版日期:2025-04-08 发布日期:2025-04-10
  • 作者简介:张朝(1987— ), 男, 北京人, 首都医科大学附属北京妇产医院工程师, 主要从事大型设备配置许可及分析, 大型设备预控评质控, 医疗设备维护保养质控巡检等研究, (Tel)86-15010203511(E-mail)15010203511@ 163. com。
  • 基金资助:
    首都医科大学附属北京妇产医院内管理专项课题基金资助项目(FCYYGL201808)

Intelligent Monitoring Method for Ventilator Operation Status Based on HHT Algorithm

ZHANG Zhao   

  1. Beijing Maternal and Child Health Care Hospital, Capital Medical University,Bejing Obstetrics and Gynecology Hospital, Beijing 100026, China
  • Received:2023-11-16 Online:2025-04-08 Published:2025-04-10

摘要: 为确保呼吸机正常工作, 提出基于希尔伯特变换(HHT: Hilbert-Huang Transform)算法的呼吸机运行状态智能监测方法。首先采用小波神经网络对呼吸机运行信号实施去噪处理; 其次, 结合 HHT 算法将去噪后的呼吸机运行信号进行经验模态分解(EMD: Empirical Mode Decompostion), 并将分解后的内禀模式分量( IMF:Intrinsic Mode Function)进行 Hilbert 谱变换, 以此获取信号频谱作为信号特征。最后, 将得到的信号频谱放入MLP(Multi-Layer Perceptron) 神 经 网 络 分 类 器 中, 采 用 反 向 传 播 算 法 对 多 层 感 知 器 ( MLP: Multi-Layer Perceptron)神经网络进行训练, 以实现呼吸机运行状态识别。实验结果表明, 所提方法的去噪效果较好, 且监测到的结果和实际频谱一致。同时监测敏感度在 96% 以上、运行状态识别准确性在 95% 以上。表明所提方法可以有效监测呼吸机运行状态, 监测性能较好。

关键词: HHT 算法, 呼吸机运行状态, 小波神经网络, EMD 分解, Hilbert 谱变换, MLP 神经网络分类器

Abstract: In order to ensure the normal operation of the ventilator, an intelligent monitoring method for the operating status of the ventilator based on the HHT(Hilbert-Huang Transform) algorithm is proposed. Firstly,wavelet neural network is used to denoise the running signal of the ventilator; Secondly, combined with the HHT algorithm, the denoised ventilator operation signal is decomposed by EMD(Empirical Mode Decomposition), and the decomposed IMF( Intrinsic Mode Functions) component is transformed by Hilbert spectrum to obtain the signal spectrum as the signal feature. Finally, the obtained signal spectrum is placed in the MLP neural network
classifier, and the backpropagation algorithm is used to train the MLP neural network to achieve recognition of the operating status of the ventilator. The experimental results show that the proposed method has a good denoising effect, and the monitored results are consistent with the actual spectrum. At the same time, the sensitivity of monitoring is above 96% , and the accuracy of operating status recognition is above 95% . This indicates that the proposed method can effectively monitor the operating status of the ventilator and has good monitoring performance.

Key words: Hilbert-Huang transform(HHT) algorithm, the operating status of the ventilator, wavelet neural network, empirical mode decompostion ( EMD), Hilbert spectral transformation, multi-layer perceptron(MLP) neural network classifier

中图分类号: 

  • TP206