吉林大学学报(信息科学版) ›› 2025, Vol. 43 ›› Issue (2): 432-438.

• • 上一篇    下一篇

基于改进神经网络算法的大规模路网交通流短时预测

张令涛   

  1. 青岛市运输事业发展中心 综合运输保障处, 山东 青岛 266000
  • 收稿日期:2024-05-06 出版日期:2025-04-08 发布日期:2025-04-10
  • 作者简介:张令涛(1973— ), 男, 山东青岛人, 青岛市运输事业发展中心高级经济师, 主要从事交通运输统计分析研究, (Tel)86-13553006761(E-mail)zhang1973@ 163. com。
  • 基金资助:
    青岛市运输事业发展中心基金资助项目(QDYS2022KJA0712)

Short Term Prediction of Large-Scale Road Network Traffic Flow Based on Improved Neural Network

ZHANG Lingtao   

  1. Integrated Transportation Support Office, Qingdao Transportation Service Center, Qingdao 266000, China
  • Received:2024-05-06 Online:2025-04-08 Published:2025-04-10

摘要: 针对大规模路网交通流在短时间内具有高度复杂性以及非线性特征, 对交通流短时预测精度有一定影响的问题, 提出了基于改进神经网络算法的大规模路网交通流短时预测方法。利用构建大规模路网函数, 通过将路段视为路网核心, 将道路节点视为相应的连接元素实现路网函数优化。以优化后的路网函数为基础, 通过 K均值算法与 EM(Expectation-Maximization)算法结合的方式提取交通流特征。通过遗传算法与 Elman神经网络算法相结合的改进方式, 对该路网的交通流进行短时预测, 得到相关的预测结果。经实验证明, 改进的方法单点平均速度预测结果与实际值更为接近, 大规模路网交通流短时预测误差较低, 预测结果可靠性更高。

关键词: 神经网络算法, 遗传算法, 大规模路网, 交通流短时预测, 特征提取, EM 算法

Abstract: The specific high complexity and nonlinear characteristics of large-scale road network traffic flow in a short period of time affect the accuracy of short-term traffic flow prediction. A short-term prediction method for large-scale road network traffic flow is studied based on improved neural network algorithms. Large-scale road network functions are constructed, road network functions are optimized by treating road sections as the core of the network and treating road nodes as corresponding connecting elements. Based on the optimized road network function, traffic flow features are extracted by combining the K-means algorithm with the EM ( Expectation-Maximization) algorithm. By combining genetic algorithm with Elman neural network algorithm, a short-term prediction of the traffic flow of the road network is carried out, and relevant prediction results are obtained.Experimental results have shown that the improved method's single point average speed prediction results are closer to the actual values, and the short-term prediction error of large-scale road network traffic flow is lower,resulting in higher reliability of the prediction results.

Key words: neural network algorithm, genetic algorithm, large scale road network, short term prediction of traffic flow, feature extraction, expectation-maximization(EM) algorithm

中图分类号: 

  • TP391. 4