吉林大学学报(信息科学版) ›› 2026, Vol. 44 ›› Issue (1): 129-135.

• • 上一篇    下一篇

基于粗糙度-改进蜂群算法的传感网络异常节点入侵检测方法

赵丰华, 周 鹏   

  1. 温州商学院 信息服务中心, 浙江 温州 325035
  • 出版日期:2026-01-31 发布日期:2026-02-04
  • 作者简介:赵丰华(1991— ), 男, 浙江温州人, 温州商学院中级实验师, 主要从事计算机、 信息系统设计与开发研究, ( Tel)86- 18357752213(E-mail)zhaofh2024@ 163. com
  • 基金资助:
    教育部科技发展中心基金资助项目(2017B00011) 

Intrusion Detection Method for Abnormal Nodes in Sensor Networks Based on Roughness Improved Bee Colony Algorithm 

ZHAO Fenghua, ZHOU Peng   

  1. Information Technology Service Center, Wenzhou Business College, Wenzhou 325035, China
  • Online:2026-01-31 Published:2026-02-04

摘要: 针对传感网络路由拓扑动态变化, 正常与异常界限模糊, 错误信息来源复杂, 传统入侵检测难辨真实 入侵与临时故障的问题, 提出了一种新颖的基于粗糙度-改进蜂群算法的传感网络异常节点入侵检测方法。 该方法旨在更精确地识别并区分异常行为, 降低因系统动态性带来的误报率。 引入粗糙度函数提取与筛选传 感网络节点入侵数据特征值, 利用系数矩阵构建入侵检测目标函数, 引用信息熵改进蜂群算法, 构建新的适应 度函数, 区分重要特征, 辨别真正的入侵和系统暂时性故障, 实现对网络异常节点的入侵检测。 测试结果 表明, 该方法对异常节点入侵检测的准确率平均值为 96. 0% , 节点入侵漏检率平均值为 1. 3% , 检测平均延时 为 0. 25 s。 所提出方法能有效应对传感网络路由拓扑动态变化带来的检测难题, 精准区分真实入侵与系统临时 故障, 在异常节点入侵检测中表现出高准确率、 低漏检率和较短检测延时的优势, 为传感网络安全稳定运行 提供了可靠保障。

关键词: 改进蜂群算法, 传感网络, 粗糙度函数, 异常节点, 入侵检测

Abstract: The topology of sensor network routing changes dynamically, the boundary between normal and abnormal is blurred, the sources of error information are complex, and traditional intrusion detection is difficult to distinguish between real intrusion and temporary faults. To address this challenge, a novel intrusion detection method for anomalous nodes in sensor networks based on roughness improved bee colony algorithm is proposed. This method aims to accurately identify and distinguish abnormal behavior, reducing the false alarm rate caused by system dynamics. Roughness function is introduced to extract and screen intrusion data feature values of sensor network nodes, intrusion detection objective function is constructed using coefficient matrix, bee colony algorithm is improved with information entropy, new fitness function is constructed, important features are distinguished, real intrusion and temporary system faults are identified, and intrusion detection of abnormal nodes in the network is achieved. The test results show that the average accuracy of this method for detecting abnormal node intrusion is 96. 0% , the average missed detection rate of node intrusion is 1. 3% , and the average detection delay is 0. 25 s. The proposed method can effectively cope with the detection difficulties caused by the dynamic changes in the routing topology of sensor networks, accurately distinguish between real intrusion and temporary system failures, and demonstrate the advantages of high accuracy, low missed detection rate, and short detection delay in detecting abnormal node intrusion, providing reliable guarantee for the safe and stable operation of sensor networks. 

Key words: improve the bee colony algorithm, sensor network, roughness function, abnormal nodes, intrusion detection

中图分类号: 

  • TP212. 9