[1] 许华, 刘英群. 变异链球菌耐氟菌株的致龋能力[J]. 国际口腔医学杂志, 2013, 40(5):698-700. [2] 赵洪岩, 张志民, 朱来宽, 等. 变形链球菌耐氟菌株的体外诱导[J]. 中国实验诊断学, 2010, 14(7):1095-1096. [3] Liao Y, Chen J, Brandt BW, et al. Identification and functional analysis of genome mutations in a fluoride-resistantStreptococcusmutans strain[J]. PLoS One, 2015, 10(4):e0122630. [4] 卢春英. 变形链球菌耐氟菌株全基因组测序[D]. 长春:吉林大学, 2014. [5] Mitsuhata C,Puteri MM,Ohara Y, et al. Possible involvement of enolase in fluoride resistance inStreptococcus mutans[J]. Pediat Dent J, 2014, 24(1):12-16. [6] 刘丽慧, 田健, 伍宁丰. 细菌氟抗性研究进展[J]. 中国农业科技导报, 2013, 15(6):113-118. [7] Takatoshi M, Nobuhiro H. Contribution of chloride channel permease to fluoride resistance in Streptococcus mutans[J]. FEMS Microbiol Lett, 2016, 363(11):fnw101. [8] Baker JL, Sudarsan N, Weinberg Z, et al. Widespreadgenetic switches and toxicity resistance proteins for fluoride[J]. Science, 2012, 335(6065):233-235. [9] Stockbridge RB, Lim HH, Otten R, et al. Fluorideresistance and transport by riboswitch-controlled CLCantiporters[J]. Proc Natl Acad Sci USA, 2012, 109(38):15289-15294. [10] 盛江筠, 朱敏,黄正蔚,等. 耐氟菌株及其亲代菌株ATP酶基因的DNA测序[J]. 上海第二医科大学学报, 2005, 25(4):340-341. [11] Ahn SJ, Wen ZT, Burne RA. Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159[J]. Infect Immun, 2006, 74(3):1631-1642. [12] 赵洪岩. 采用非标记定量技术对变形链球菌耐氟菌株的差异蛋白质组学研究[D]. 长春:吉林大学, 2011. [13] Dale JW, Park SF. Molecular genetics of bacteria[M]. 5th ed. Hoboken:Wiley-Blackwell, 2013:75-122. [14] 于丹妮. 氟化物对变形链球菌耐氟菌株的葡萄糖摄入量的影响[J]. 天津医药, 2003, 31(7):414-416. [15] 姜巨全,郝林. 微生物生理学[M]. 北京:中国农业大学出版社, 2014:212-219. |