吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (3): 759-771.doi: 10.13278/j.cnki.jjuese.201503110

• 地质与资源 • 上一篇    下一篇

内蒙古东山湾钨钼多金属矿床成矿流体地球化学特征及成因

王承洋1, 王可勇1, 周向斌2, 李文3, 黄广环3, 李剑锋1, 张雪冰1, 于琪1   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 黑龙江省地质科学研究所, 哈尔滨 150036;
    3. 内蒙古山金地质矿产勘查有限公司, 内蒙古 赤峰 024005
  • 收稿日期:2014-11-13 发布日期:2015-05-26
  • 通讯作者: 王可勇(1965),男,教授,博士生导师,主要从事矿产普查与勘探方面的研究,E-mail:wangky@jlu.edu.cn。 E-mail:wangky@jlu.edu.cn
  • 作者简介:王承洋(1988),男,博士研究生,主要从事矿产普查与勘探方面的研究,E-mail:wangyanglcu@126.com
  • 基金资助:

    中国地质调查局地质调查项目(1212011120329)

Geochemical Characteristics of Ore-Forming Fluids and Genesis of Dongshanwan Tungsten- Molybdenum Polymetallic Deposit in Inner Mongolia

Wang Chengyang1, Wang Keyong1, Zhou Xiangbin2, Li Wen3, Huang Guanghuan3, Li Jianfeng1, Zhang Xuebing1, Yu Qi1   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Institute of Geological Science of Heilongjing Province, Harbin 150036, China;
    3. Inner Mongolia Shandong Gold Minerals Survey Co., Ltd, Chifeng 024005, Inner Mongolia, China
  • Received:2014-11-13 Published:2015-05-26

摘要:

东山湾钨钼多金属矿床为大兴安岭南段新发现的一斑岩型矿床,产于燕山晚期花岗斑岩体与二叠系的接触带附近。该矿床主要发育细脉、微细脉浸染型矿化,其钨钼银多金属热液成矿作用划分为黑钨矿-锡石-毒砂-石英阶段(Ⅰ)、毒砂-辉钼矿-石英阶段(Ⅱ)、银多金属硫化物-石英阶段(Ⅲ) 3个阶段。为了系统研究该矿床不同成矿阶段成矿流体的来源、性质及其演化特点,对不同成矿阶段样品进行了流体包裹体岩相学、显微测温学及碳、氢、氧同位素研究。结果表明:Ⅰ、Ⅱ阶段石英中流体包裹体的均一温度分别为232.7~321.7 ℃和201.2~352.7 ℃,盐度(w(NaCl))分别为3.4%~9.8%和4.1%~10.4%,成矿流体属中温、中等盐度不均匀的NaCl-H2O体系型热液;Ⅲ阶段石英中流体包裹体的均一温度变化范围为198.6~273.5 ℃,盐度为5.0%~8.4%,成矿流体属中低温、中低盐度均匀的NaCl-H2O体系型热液;Ⅱ阶段石英样品的δ18O值为7.5‰~9.0‰,石英中流体包裹体的δDH2O-SMOW值与δ13CPDB值分别为-175.6‰~-160.3‰与-23.5‰~-20.1‰。成矿流体具有岩浆分异热液的特点,并伴随大气降水的大量加入,流体运移过程中地层有机质的加入导致了成矿流体具有较低的δDH2O-SMOW值、δ13CPDB值;成矿流体的不混容作用、大气降水的加入是导致区内钨钼沉淀、成矿的主要机制,而银多金属矿化则可能由成矿流体的降温冷却所引起。

关键词: 东山湾钨钼矿床, 成矿流体, 地球化学, 矿床成因, 内蒙古

Abstract:

Dongshanwan W-Mo poly-metallic deposit is a newly discovered porphyry type deposit in the southern Great Xing'an Range.It occurs in the contact zone of the Late Yanshanian granitoids and Permian strata. It mainly develops as vein-let type and fine vein disseminated type in terms of mineralization. The formation of Dongshanwan deposit can be divided into three stages: I. wolframite-arsenopyrite-quartz,Ⅱ. arsenopyrite-molybdenite-quartz, and Ⅲ. silver polymetallic-quartz. For the purpose of getting the origin, nature,and evolution characteristics of the ore-forming fluids of the different mineralization stages, we discuss the petrography, micro-thermometry, and carbon-hydrogen-oxygen isotope of the fluid inclusions. The results show that: the aqueous two-phase and vapor-rich two-phase fluid inclusions developed in stage I and II, their homogenization temperature ranges 232.7-321.7 ℃ and 201.2-352.7 ℃, the salinity values of ranges 3.4%-9.8% and 4.1%-10.4%, and the ore-forming fluid belongs to medium temperature and medium salinity NaCl-H2O hydrothermal system. The aqueous two-phase fluid inclusions developed in stage III, their homogenization temperature ranges from 198.6 to 273.5℃, the salinity values ranges from 5.0%-8.4%, and the ore-forming fluid belongs to low temperature and low salinity NaCl-H2O hydrothermal system. The δ18O value of quartz sample ranges from 7.5‰-9.0‰, the δDH2O-SMOW value and δ13CPDB value of the fluid inclusions in quartz are -175.6‰--160.3‰ and -23.5‰--20.1‰. The ore-forming fluid has the characteristics of hydrothermal magma, which is accompanied by adding of meteoric water and organic matter in the formation, this led to a lower value of δDH2O-SMOW and δ13CPDB value of ore-forming fluid. The immiscibility and adding of meteoric water led to the mineralization of tungsten and tin, and the silver poly-metallic mineralization might be caused mainly by cooling of the ore-forming fluid.

Key words: Dongshanwan W-Mo deposit, ore-forming fluids, geochemical nature, ore genesis, Inner Mongolia

中图分类号: 

  • P618.6

[1] 付占荣,陈会军. 内蒙古巴林左旗东山湾钨锡铍矿床地质特征及找矿前景[J]. 桂林工学院学报,2004, 24(2):148-151. Fu Zhanrong, Chen Huijun. Geological Characteristics and Prospect of Mineral Exploration of Dongshanwan W-Sn-Be Deposit at Balinzuo County of Inner Mongolia[J]. Journal of Guilin University of Technology,2004,24(2):148-151.

[2] 周振华,吕林素,杨永军,等. 内蒙古黄岗锡铁矿区早白垩世A型花岗岩成因:锆石U-Pb年代学和岩石地球化学制约[J]. 岩石学报,2010,25(3):667-669. Zhou Zhenhua,Lü Linsu,Yang Yongjun, et al. Petrogenesis of the Early Cretaceous A-Type Granite in the Huanggang Sn-Fe Deposit, Inner Mongolia: Constraints from Zircon U-Pb Dating and Geochemistry[J]. Acta Petrologica Sinica,2010, 25(3):667-669.

[3] 许文良, 王枫, 裴福萍, 等. 中国东北中生代构造体制与区域成矿背景: 来自中生代火山岩组合时空变化的制约[J]. 岩石学报, 2013, 29(2): 339-353. Xu Wenliang,Wang Feng,Pei Fuping, et al. Mesozoic Tectonic Regimes and Regional Ore-Forming Background in NE China: Constraints from Spatial and Temporal Variations of Mesozoic Volcanic Rock Associations[J]. Acta Petrologica Sinica, 2013, 29(2): 339-353.

[4] 武新丽, 毛景文, 周振华. 大兴安岭中南段布敦化铜矿床金鸡岭矿段流体包裹体研究[J]. 矿床地质, 2014, 33(1): 210-222. Wu Xinli,Mao Jingwen,Zhou Zhenhua.Fluid Inclusion Study of Jinjiling Ore Block in Budunhua Cu Deposit Along Middle-South Section of Da Hinggan Mountains[J]. Mineral Deposits, 2014, 33(1): 210-222.

[5] 马星华,陈斌. 大兴安岭南段敖仑花斑岩钼(铜)矿床成矿流体来源与成矿作用:稳定同位素C、H、O、S和放射性Pb同位素约束[J]. 吉林大学学报:地球科学版,2011,41(6):1770-1783. Ma Xinghua,Chen Bin. The Source of Hydrothermal Fluids and Mineralization in the Aolunhua Porphyry Mo-Cu Deposit,Southern Da Hinggan Mountains: Constraints from Stable (C,H,O and S) and Radiogenic(Pb) Isotops[J]. Journal of Jilin University: Earth Science Edition,2011, 41 (6) : 1770-1783.

[6] 张吉衡. 大兴安岭中生代火山岩年代学及地球化学研究[D].武汉:中国地质大学,2009. Zhang Jiheng.Chronology and Geochemistry of the Mesozoic Volcanic Rocks in the Great Xing'an Range Northeastern China[D]. Wuhan:China University of Geoscinces, 2009.

[7] 张健, 卞雄飞, 陈树旺, 等. 大兴安岭中南部上二叠统林西组页岩气资源前景[J]. 地质通报, 2013, 32(8): 1297-1306. Zhang Jian,Bian Xiongfei,Chen Shuwang,et al. Shale Gas Resources Prospect of Late Permian Linxi Formation in the Middle-Southern Part of the Da Hinggan Mountains[J].Geological Bulletin of China, 2013, 32(8):1297-1306.

[8] Bai Ling'an, Sun Jinggui, Gu Alei, et al. A Review of the Genesis, Geochronology, and Geological Significance of Hydrothermal Copper and Associated Metals Deposits in the Great Xing'an Range, NE China[J]. Ore Geology Reviews, 2014, 61: 192-203.

[9] 徐毅. 黄岗甘珠尔庙成矿带多金属矿构造控矿特征分析[D]. 北京:中国地质大学,2005. Xu Yi. Structure Control Characteristics of Polymetallic Deposits in Huanggang-Ganzhuermiao Metallogenic Belt, Inner Mongolia Province[D]. Beijing:China University of Geoscinces, 2005.

[10] 辛江. 内蒙古东南部多金属成矿系列与找矿模型[D]. 北京:中国地质大学,2013. Xin Jiang.The Polymetallic Metallogenic Series and Exploration Modle in the Southeast of Inner Mongolia[D]. Beijing:China University of Geosience,2013.

[11] Brown P E,Hagemann S G. MacFlincor and Its Application to Fluids in Archean Lode-Gold Deposits[J]. Geochimica et Cosmochimica Acta, 1995,59(19):3943-3952.

[12] 戴金星, 宋岩,洪峰,等. 中国东部无机成因的二氧化碳气藏及其特征[J]. 中国海上油气:地质, 1994, 8(4): 215-222. Dai Jinxing, Song Yan, Hong Feng, et al.Inorganic Genetic Carbon Dioxide Gas Accumulations and Their Characteristics in East Part of China[J]. China Offshore Oil and Gas:Geology,1994, 8(4): 215-222.

[13] Roedder E. Fluid Inclusion Evidence for Immiscibility in Magmatic Differentiation[J]. Geochimica et Cosmochimica Acta, 1992, 56(1): 5-20.

[14] Foster R P. Fluid Inclusion Studies[J]. Journal of the Geological Society, 1988, 145(1): 137-138.

[15] Drummond S E,Ohmoto H. Chemical Evolution and Mineral Deposition in Boiling Hydrothermal Systems[J]. Economic Geology, 1985,80(1):126-147.

[16] Li Xiaofeng, Wang Chunzeng, Hua Renmin, et al. Fluid Origin and Structural Enhancement During Mineralization of the Jinshan Orogenic Gold Deposit, South China[J]. Mineralium Deposita, 2010, 45(6): 583-597.

[17] Chen Xiaodan,Ye Huishou,Wang Huan. Genesis and Evolution of the Leimengou Porphyry Mo Deposit in West Henan Province, East Qinling-Dabie Belt, China: Constraints from Hydrothermal Alteration, Fluid Inclusions and Stable Isotope Data[J]. Journal of Asian Earth Sciences 2014, 79: 710-722.

[18] Webster J D. The Exsolution of Magmatic Hydrosaline Liquids[J]. Chemical Geology, 2004, 210(1):33-48.

[19] 郑永飞,陈江峰. 稳定同位素地球化学[M].北京:科学出版社,2000: 1-360. Zheng Yongfei,Chen Jiangfeng.Geochemistry of Stable Isotpes[M].Beijing:Science Press, 2000: 1-360.

[20] 张理刚.稳定同位素在地质科学中的应用[M].西安:陕西科学技术出版社,1985:91-94. Zhang Ligang.The Application of Stable Isotope to Geology[M].Xi'an:Shaanxi Science and Technology Press, 1985:91-94.

[21] Halter W E,Webster J D. The Magmatic to Hydrothermal Transition and Its Bearing on Ore-Forming Systems[J]. Chemical Geology,2004,210(1): 1-6.

[22] 王可勇,张春燕,樊岳铭,等.山东玲珑金矿床成矿流体地球化学特征[J]. 吉林大学学报:地球科学版,2008,38(2):194-201. Wang Keyong,Zhang Chunyan,Fan Yueming, et al. Geochemical Characteristics of Ore-Forming Fluids of the Linglong Gold Deposit in Shandong Province[J]. Journal of Jilin University: Earth Science Edition, 2008,38(2):194-201.

[23] 万多,王可勇,李文昌,等. 滇西北热林Cu-Mo矿床流体包裹体特征[J]. 吉林大学学报:地球科学版,2012, 42 (增刊3):54-63. Wan Duo,Wang Keyong,Li Wenchang, et al. The Geochemical Characteristics of Ore-Forming Fluids of Relin Cu-Mo Deposit in Northwestern Yunnan Province[J].Journal of Jilin University: Earth Science Edition,2012, 42 (Sup.3):54-63.

[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 李向文, 张志国, 王可勇, 孙加鹏, 杨吉波, 杨贺. 大兴安岭北段宝兴沟金矿床成矿流体特征及矿床成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1071-1084.
[4] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[5] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[6] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[7] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[8] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[9] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[10] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[11] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[12] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[13] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[14] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[15] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!