吉林大学学报(地球科学版) ›› 2015, Vol. 45 ›› Issue (4): 1052-1059.doi: 10.13278/j.cnki.jjuese.201504109

• 地质与资源 • 上一篇    下一篇

国际油页岩开发技术与研究进展记第33届国际油页岩会议

孙友宏1, 邓孙华1, 王洪艳2   

  1. 1. 吉林大学建设工程学院, 长春 130026;
    2. 吉林大学化学学院, 长春 130012
  • 收稿日期:2014-02-01 发布日期:2015-07-26
  • 通讯作者: 邓孙华(1985),男,讲师,主要从事油页岩资源的开发与利用、近临界水提取技术等方面的研究,E-mail:denghua13@163.com. E-mail:denghua13@163.com
  • 作者简介:孙友宏(1965),男,教授,博士生导师,主要从事新能源钻采技术、大陆科学钻探技术与装备和极地钻探技术与装备等方面的研究,E-mail:syh@jlu.edu.cn
  • 基金资助:

    国家潜在油气资源(油页岩勘探开发利用)产学研用合作创新项目(2009-09)

Advances in the Exploitation Technologies and Researches of Oil Shale in the World:Report on 33rd Oil Shale Symposium in US

Sun Yonghong1, Deng Sunhua1, Wang Hongyan2   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China;
    2. College of Chemistry, Jilin University, Changchun 130012, China
  • Received:2014-02-01 Published:2015-07-26

摘要:

笔者参加了美国科罗拉多矿业学院于2013年10月14-16日组织召开的第33届国际油页岩会议(33rd Oil Shale Symposium).为了让国内学者了解国际油页岩开发技术与研究的进展情况,笔者选取了会上重要报告,从油页岩资源的地质调查、油页岩化学分析技术、地面干馏技术、地下原位转化技术、国际油页岩项目动态和油页岩资源开发风险评估等方面介绍了国际油页岩研究的新进展.国际上对油页岩资源的开发与利用正向着快速、经济、原位和环保的方向发展,会议上提出的油页岩光谱分析、沸腾油原位转化工艺及其先导试验区的建设、油页岩新项目的设计与发展等相关技术与理念都非常值得我国油页岩行业学习与借鉴.

关键词: 油页岩, 国际会议, 地质调查, 化学分析, 干馏技术, 原位转化, 油页岩项目

Abstract:

The 33rd Oil Shale Symposium sponsored by Colorado School of Mines was held in 14-16 Oct, 2013. The emphasis of the symposium was on the following: geological surveys, chemical analyses, surface retorting technologies, in-situ technologies, international projects and development, and risk assessments of oil shale. A summary is given of the most important facts and views presented in the symposium. It is indicated that the development and utilization of oil shale in the world is evolving toward in-situ, fast, economical and environment friendly direction. Many techniques and ideas presented in the symposium, such as the spectroscopic analysis, boiling oil in situ conversion process and its pilot test, the design, and development of the new oil shale, are worthy of our learning and reference.

Key words: oil shale, international symposium, geological survey, chemical analysis, retorting technology, in-situ, oil shale project

中图分类号: 

  • P618.12

[1] Doumit P, Kerr S, Schou L. Stratigraphic and Lithologic Consistency and Variability of the Mahogany Zone Oil Shale in the Eastern Uintah Basin, Utah//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 25.

[2] Boak J, Poole S, Milkeviciene KT, et al. Geochemistry of the Green River Formation, Piceance Creek Basin, Colorado//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 30.

[3] Goren O. The Associations of Various Trace Elements to the Rock Components of Carbonate Oil Shales//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 25.

[4] Birdwell J, Washburn K, Johnson R,et al. Rapid Screening of Oil Shale Using Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 33.

[5] 黄红英,尹齐和. 傅里叶变换衰减全反射红外光谱法(ATR-FTIR)的原理与应用进展[J]. 中山大学研究生学刊:自然科学、医学版, 2011, 32(1): 20-31. Huang Hongying, Yin Qihe. Fundamentals and Application Advances in Attenuated Total Internal Reflectance Fourier Transform Infrared Spectroscopy (ATR-FTIR)[J]. Journal of the Graduates, Sun Yat-Sen University: Natural Sciences, Medicine, 2011, 32(1): 20-31.

[6] Rath M. Utilizing NIR Technology to Improve Oil Shale Processing//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 34.

[7] Fletcher T H, Gillis R, Adams J, et al. Characterization of Pyrolysis Products from a Utah Green River Oil Shale Sample by 13C NMR, GC/MS, and FT IR//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 31.

[8] Hutton, Adrian C, Bharati, et al. Chemical and Petrographic Classification of Kerogen/Macerals[J]. Energy Fuels, 1994, 8 (6): 1478-1488.

[9] Vandenbrouckea M C. Largeau, Kerogen Origin, Evolution and Structure[J]. Organic Geochemistry, 2007, 38(5): 719-833.

[10] Geng Cengceng, Li Shuyuan. Comparison of Nitrogen Compounds in Shale Oil and Coal Tar by Gas Chromatography-Mass Spectrometry and Fourier Transform Ion Cyclotron Resonance Mass Spectrometry//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 34.

[11] Pomerantz D. Modern Methods of Characterizing the Chemical Composition of Bitumen and Kerogen: New Possibilities for Kinetic Models//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 29-30.

[12] Pugmire R, Fletcher T, Hillier J, et al. Detailed Characterization and Pyrolysis of Shale, Kerogen, Kerogen Chars, Bitumen, and Light Gases from a Green River Oil Shale Core//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 30-31.

[13] Siskin M, Scouten C G, Rose K D, et al. Detailed Structural Characterization of the Organic Material in Rundle Ramsay Crossing and Green River Oil Shales[J]. Composition, Geochemistry and Conversion of Oil Shales, NATO ASI Series, 1995, 455: 143-158.

[14] Orendt A M, Pimienta I S O, Badu S R, et al. Three-Dimensional Structure of the Siskin Green River Oil Shale Kerogen Model: A Comparison Between Calculated and Observed Properties[J]. Energy & Fuels, 2013, 27(2): 702-710.

[15] 钱家麟, 王剑秋, 李术元. 世界油页岩资源利用和发展趋势[J]. 吉林大学学报:地球科学版, 2006, 36(6): 877-887. Qian Jialin, Wang Jianqiu, Li Shuyuan. World Oil Shale Utilization and Its Future[J]. Journal of Jilin University: Earth Science Edition, 2006, 36(6): 877-887.

[16] Geng Cengceng,Li Shuyuan,Qian Jialin. New Development and Utilization of Chinese Oil Shale//33th Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013:14.

[17] Aarna I. Status Update of Enefit280 Shale Oil Production Plant in Estonia//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 43.

[18] Sherritt R, Taavi Lauringson, Florian Philipps. Oil Shale Attrition in a Circulating Fluidised Bed Combustor//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 27.

[19] Garnier O, Francoise Behar, Bernard Corre, et al. Prediction of EcoshaleTM Production Profile Using CFD and Kinetic Models//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 28.

[20] Longo P. Paraho II: New Bench Retort Experimental Unit//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 38.

[21] Wani A, Schroeder T, Meyer C, et al. Low Water Use Technologies: Improvements to Shell's Water Balance//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 39.

[22] Burnham A. Oil Shale Rock Mechanics: How to Deal with Huge Changes with Grade and Temperature?//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 35.

[23] Hradisky M, Smith P, Burnham A. High Performance Computing Simulations of In-Situ Thermal Treatment of Oil Shale//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 27.

[24] Li Hangyu, Vink J, Alpak F. A Multiscale Modeling Method for the In-Situ Conversion Process//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 27.

[25] Wang Zhijun, Deng Sunhua, Wang Hongyan. Sub-Critical Water Extraction of Huadian Oil Shale and Pyrolysate Properties//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 46.

[26] Curtis D, Forsberg C. Nuclear Heat and Power for In-Situ Shale Oil Production and Variable Electricity//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 38.

[27] Aho G, France B. Enefit's Utah Oil Shale Bulk Sample Project//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 35-36.

[28] Boak J. Where do We Stand? A Global View of the Status and Future of Shale Oil Production from Oil Shale//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines,2013: 23.

[29] Yildirim E. Canada's Oil Shales: The Time is Now//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 40.

[30] Al-Ramini H. A Mathematical Modeling Approach for Assessing the Energy Crisis in Jordan//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 43-44.

[31] Yusupkhodjaev A, Salikhov R. Oil Shale Development in Uzbekistan: The Sangruntau Project//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 39-40.

[32] Cook T. Oil Shale Development Projections: When Will Technology and Economics Convert This Resource into Reserves?//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 39.

[33] Argyle D, Arbus M. Challenges and Opportunities for Potential Oil Shale Operators//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 23.

[34] Kallemets K. Optimal Resource Revenue Model for a Developed Country//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 28.

[35] Jia J. Challenges and Risk Assessment for International Oil Shale Project//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 29.

[36] Leverette M, Status and Plans for the U S Department of Interior Program for Development of Oil Shale and Oil Sands//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 22.

[37] Puura E.Environmental Impacts of Estonian Oil Shale Industry: Lessons Learned During 97 Years of Utilization//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 42.

[38] Posey H, Finley J, Vuelvas F. Shell's Environmental Baseline Surveys in Piceance Basin, Colorado//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 41-42.

[39] Anisimov L. Spontaneous Fires in Oil Shale Depo-sits: From Hazards to Resources//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 41.

[40] Lojewski A, Odut S. Oil Shale and Fuel Oil Chemistry Related to Combustion and Fouling Issues, with Reference to Operation of the ATP Plant at Fushun, China//33rd Oil Shale Symposium. Golden Colorado: Colorado School of Mines, 2013: 38.

[1] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[2] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441.
[3] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[4] 杜佰伟, 谢尚克, 董宇, 彭清华, 郑博. 伦坡拉盆地渐新统丁青湖组油页岩特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 671-680.
[5] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[6] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[7] 孙耀庭, 徐守余, 张世奇, 徐昊清, 郭丽丽. 山东昌乐凹陷油页岩地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2015, 45(3): 736-742.
[8] 姜光辉, 郭芳, 于奭. 岩溶水系统的水化学曲线及其在水文地质研究中的应用[J]. 吉林大学学报(地球科学版), 2015, 45(3): 899-907.
[9] 谢尚克,杜佰伟,王剑,彭清华,郑博. 西藏伦坡拉盆地油页岩特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1760-1767.
[10] 孟庆涛,刘招君,胡菲,孙平昌,柳蓉,周人杰,甄甄. 桦甸盆地始新统油页岩稀土元素地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 390-399.
[11] 刘招君, 孟庆涛, 贾建亮, 孙平昌, 柳蓉, 胡晓峰. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. J4, 2012, 42(5): 1286-1297.
[12] 孙平昌, 刘招君, 李宝毅, 柳蓉, 孟庆涛, 周人杰, 姚树青, 徐银波. 桦甸盆地桦甸组油页岩段地球化学特征及地质意义[J]. J4, 2012, 42(4): 948-960.
[13] 柳蓉, 刘招君, 杜江峰, 刘冬青, 杨小红, 徐银波. 依兰盆地始新统达连河组油页岩成因新认识[J]. J4, 2012, 42(4): 941-947.
[14] 季桂娟, 杨春明, 甘树才, 吴晓敏, 王忠革. 利用油页岩灰渣制备通用硅酸盐水泥[J]. J4, 2012, 42(4): 1173-1178.
[15] 朱建伟, 赵刚, 刘博, 郭巍, 成俊. 油页岩测井识别技术及应用[J]. J4, 2012, 42(2): 289-295.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!