吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1090-1099.doi: 10.13278/j.cnki.jjuese.201604110

• 地质与资源 • 上一篇    下一篇

敦密断裂带盆地群油页岩特征及成矿差异分析

刘招君1,2, 孙平昌1,2, 柳蓉1,2, 孟庆涛1,2, 胡菲1,2   

  1. 1. 吉林大学地球科学学院, 长春 130061;
    2. 吉林省油页岩及共生能源矿产重点实验室, 长春 130061
  • 收稿日期:2016-06-30 出版日期:2016-07-26 发布日期:2016-07-26
  • 通讯作者: 孙平昌(1985),男,讲师,主要从事油页岩成矿理论方面研究,E-mail:sunpingchang711@126.com E-mail:sunpingchang711@126.com
  • 作者简介:刘招君(1951),男,教授,主要从事油页岩成矿理论与资源评价方面研究,E-mail:liuzj@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(41402088);中国博士后科学基金项目(2014M550174,2015T80303);吉林省科技发展计划项目(20150520070JH)

Research on Oil Shale Features and Metallogenic Differences in Dunhua-Mishan Fault Zone Basins

Liu Zhaojun1,2, Sun Pingchang1,2, Liu Rong1,2, Meng Qingtao1,2, Hu Fei1,2   

  1. 1. College of Earth Sciences, Jilin University, Changchun 130061, China;
    2. Key-Laboratory for Oil Shale and Coexisting Minerals, Jilin University, Changchun 130061, China
  • Received:2016-06-30 Online:2016-07-26 Published:2016-07-26
  • Supported by:

    Supported by Nation Natural Science Fund (41402088), China Postdoctoral Science Foundation Grant (2014M550174 and 2015T80303) and Science and Technology Development Plan of Jilin Province (20150520070JH)

摘要:

古近纪敦密断裂带上分布一系列的含油页岩盆地群。根据盆地间构造-沉积充填、岩石组合和油页岩赋存特征,初步确认盆地群中油页岩沉积于湖盆鼎盛阶段,均形成于古近系始新统路特阶。盆地群间油页岩矿床特征存在明显的差别,由西南向东北,油页岩厚度逐渐变小,其沉积环境由深湖到半深湖,再到湖沼,而有机质来源则由湖泊生物为主,到湖泊生物和陆源有机质双向来源,过渡为以陆源高等植物为主。结合含油页岩层系形成于同一时期和相似的古气候背景下,盆地沉降和沉积充填作用是影响油页岩矿床差异的关键因素。长期处于欠补偿环境,可容纳空间大的湖盆利于巨厚油页岩的形成,随着可容纳空间的减少、陆源碎屑供给的增多,油页岩厚度减薄,分布也变得相对局限。深湖和湖沼成因油页岩品质较好,半深湖油页岩品质较差。

关键词: 敦密断裂带, 古近系, 盆地群, 油页岩, 成矿差异, 控矿因素

Abstract:

Several oil shale-bearing basins are distributed in the Dunhua-Mishan fault zone in Northeast China. The characteristics of tectonic and sedimentary filling evolution, sedimentary association, the occurrences of oil shale and coal indicated that oil shale deposited in the heyday of the lakes, while the sedimentary age of oil shale layers was the Paleogene Eocene Lutetian Stage. While oil shale have displayed certain differences among these basins, from southwest to northeast direction of this fault zone, the thickness of oil shale becomes smaller, and sedimentary environment changed from deep lake to semi-deep lake, and limnetic finally. Meanwhile, the organism sources was dominated by aquatic organism in the southwest part basins, and it became a mixture of terrestrial and aquatic organic matter in the middle part of this fault zone, whereas organic matter of northeast part basins in the fault zone originates mainly from land plants. Combined oil shale layers developed in the same age and similar paleoclimate, tectonic subsidence and sedimentary filling were the key factors on controlling the differences of oil shale in these basins. Perpetual underfilled sedimentary environment and large accommodation promoted huge thick high quality oil shale developed. With the decreasing of accommodation and increasing terrigenous debris supply, the thickness of oil shale thinned and distributed sparsely, while grade of deep lake and limnetic oil shale was high and semi-deep lake oil shale was low.

Key words: Dunhua-Mishan fault zone, Paleogene, basins, oil shale, metallogenic differences, ore controlling factors

中图分类号: 

  • P618.12

[1] 吴根耀,马力,梁兴,等. 从郯庐断裂带两侧的"盆""山"耦合演化看前白垩纪"郯庐断裂带"的性质[J]. 地质学报,2008,27(3):308-325. Wu Genyao, Ma Li, Liang Xing, et al. The Nature of the Pre-Cretaceous "Tanlu Fault Zone" Viewed in the Light of Basin Range Coupling Evolution on Its Both Sides[J]. Geological Bulletin of China, 2008, 27(3): 308-325.

[2] 陈荣度. 从辽宁东、西部地质对比论郯庐断裂的平移运动[J]. 辽宁地质, 1995, 9: 184-193. Chen Rongdu. On the Translation Movement of Tan-Lu Fracture From Geological Correlation Between East and West Liaoning[J]. Liaoning Geology, 1995, 9:184-193.

[3] 张贻侠,孙运生,张兴洲,等.中国满洲里绥芬河地学断面[M]. 北京:地质出版社, 1999:15-56. Zhang Yixia, Sun Yunsheng, Zhang Xingzhou, et al. Manzhouli-Suifenhe Global Geoscience Transect (GCT) of North China[M]. Beijing: Geological Publishing House, 1999:15-56.

[4] 孙晓猛,王书琴,王英德,等. 郯庐断裂带北段构造特征及构造演化序列[J]. 岩石学报,2010, 26(1):165-176. Sun Xiaomeng, Wang Shuqin, Wang Yingde, et al. The Structural Feature and Evolutionary Series in the Northern Segment of Tancheng-Lujiang Fault Zone[J]. Acta Petrologica Sinica, 2010, 26(1):165-176.

[5] 刘志宏,梅梅,高军义,等. 东北东部虎林盆地的构造特征、成盆机制及敦密断裂带北东段的形成时代[J]. 吉林大学学报(地球科学版),2014,44(2):480-489. Liu Zhihong, Mei Mei, Gao Junyi, et al. Strctural Features, Formation Mechanism of Hulin Basin and Deformation Time of Northeastern Segment of Dunhua-Mishan Fault Zone in Northeast China[J]. Journal of Jilin Unversity: Earth Science Edition, 2014, 44(2): 480-489.

[6] Quan C, Liu Y S C, Utescher T. Paleogene Temperature Gradient, Seasonal Variation and Climate Evolution of Northeast China[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2012, (313/314): 150-161.

[7] 胡善亭, 康西栋, 吴克平, 等.梅河盆地聚煤环境分析[J].中国煤田地质, 1996, 8(2): 13-15. Hu Shanting, Kang Xidong, Wu Keping, et al. Sedimentary Coal Accumulating Environment of Meihe Basin[J]. Coal Geology of China, 1996, 8(2): 13-15.

[8] 张普林,吕宝臣,李春田,等. 早第三纪桦甸动物群的发现及其地质意义[J]. 吉林地质,1986,4:1-11. Zhang Pulin, Lü Baochen, Li Chuntian, et al. Discovery of the Huadian Fauna of the Early Tertiary and Its Geological Significance[J]. Jilin Geology, 1986, 4: 1-11.

[9] 孟庆涛. 桦甸盆地始新统油页岩岩石地球化学特征及富集规律研究[D]. 长春:吉林大学,2010: 27-53. Meng Qingtao. Research on Petrologic and Geochemical Characteristics of Eocene Oil Shale and Its Enrichment Regularity, Huadian Basin[D]. Changchun: Jilin University, 2010:27-53.

[10] 王海峰,张廷山,戴传瑞,等. 敦化盆地上侏罗统上新统地层划分对比讨论[J].中国地质,2008,35(1):40-53. Wang Haifeng, Zhang Tingshan, Dai Chuanrui, et al. Stratigraphic Division and Correlation of the Upper Jurassic-Pliocene in the Dunhua Basin[J]. Geology in China, 2008, 35(1): 40-53.

[11] 王东方.抚顺古新世玄武岩特征及其在郯庐断裂发展中的构造意义[J].岩石矿物学杂志,1986,5(3):212-219. Wang Dongfang. The Paleocene Basalt in Fushun District and Their Tectonic Significance in Development of Tancheng-Lujiang Fault Belt[J]. Acta Petrologica et Mineralogica, 1986, 5(3): 212-219.

[12] 景建安,王宁,黎伟. 宁安盆地构造演化与找铀矿远景预测[J]. 铀矿地质,2008,24(3):143-149. Jing Jian'an, Wang Ning, Li Wei. The Structural Evolution and Prognosis of Uranium Exploration in Ning'an Basin[J]. Uranium Geology, 2008, 24(3): 143-149.

[13] 王珊. 鸡西盆地早白垩世城子河组穆棱组沉积体系分析[D]. 武汉:中国地质大学,2012:9-14. Wang Shan. Depositional System Analysis of Early Cretaceous Chengzihe-Muling Formation in Jixi Basin Northeastern China[D]. Wuhan: China University of Geosciences, 2012: 9-14.

[14] 谭宝德. 虎林盆地七虎林河坳陷下第三系虎林组烃源岩地球化学特征[J]. 内蒙古石油化工,2011,12:132-135. Tan Baode. The Geochemical Characteristics of Hydrocarbon Source Rocks of Qihulin River Depress in HuLin Basin[J]. Inner Mongolia Petrochemical Industry, 2011, 12: 132-135.

[15] 刘招君,杨虎林,董清水,等. 中国油页岩[M]. 北京:石油工业出版社,2009:38-116. Liu Zhaojun, Yan Hulin, Dong Qingshui, et al. Oli Shale in China[M].Beijing: Petroleum Industry Press, 2009: 38-116.

[16] Bai Y Y, Liu Z J, Sun P C, et al. Rare Earth and Major Element Geochemistry of Eocene Fine-grained Sediments in Oil Shale-and Coal-Bearing Layers of the Meihe Basin, Northeast China[J]. Journal of Asian Earth Sciences, 2015, 97: 89-101.

[17] 柳蓉,刘招君,刘沣,等. 抚顺盆地始新世计军屯组油页岩贫富矿成矿机制[J]. 大庆石油地质与开发,2008,27(2):47-50. Liu Rong, Liu Zhaojun, Liu Feng, et al. High Grade and Low Grade Oil Shale Metallogenic Mechanism of Eocene Jijuntun Formation in Funshun Basin[J]. Petroleum Geology & Oilfield Development in Daqing, 2008, 27(2): 47-50.

[18] Strobl S A I, Sachsenhofer R F, Bechtel A, et al. Depositional Environment of Oil Shale Within the Eocene Jijuntun Formation in the Fushun Basin (NE China)[J]. Marine and Petroleum Geology, 2014, 56: 166-183.

[19] 徐银波,柳蓉,刘招君,等. 梅河盆地古近纪梅河组有机质富集规律及沉积演化研究[J]. 煤炭学报,2013,38(11):2007-2016. Xu Yinbo, Liu Rong, Liu Zhaojun, et al.Deposition and Enrichment Pattern of Organic Matter of the Meihe Formation in the Paleogene,Meihe Basin[J].Journal of China Coal Society, 2013, 38 ( 11) : 2007-2016.

[20] 李宝毅,姚树青,孙平昌,等. 梅河盆地油页岩特征及成因[J]. 世界地质,2014,33 ( 2 ) : 457-464. Li Baoyi,Yao Shuqing, Sun Pingchang, et al. Characteristics and Origin of Oil Shale in Meihe Basin[J]. Global Geology, 2014, 33(2) : 457-464.

[21] Sun P C, Sachsenhofer R F, Liu Z J, et al. Organic Matter Accumulation in the Oil Shale-and Coal-Bearing Huadian Basin (Eocene; NE China)[J]. International Journal of Coal Geology, 2013, 105: 1-15.

[22] 孙平昌, 刘招君, 孟庆涛, 等. 桦甸盆地古近纪充填特征及对油页岩成矿的影响[J]. 煤炭学报, 2011, 36(7): 1110-1116. Sun Pingchang, Liu Zhaojun, Meng Qingtao, et al. Effect of the Basin-Fill Features on Oil Shale Formation in Paleogene, Huadian Basin[J]. Journal of China Coal Society, 2011, 36(7): 1110-1116.

[23] Strobl S A I, Sachsenhofer R F, Bechtel A, et al. Deposition of Coal and Oil Shale in NE China: The Eocene Huadian Basin Compared to the Coeval Fushun Basin[J]. Marine and Petroleum Geology, 2015, 64: 347-362.

[24] 郭文秀,温志良,刘建民,等. 吉林省油页岩[M]. 长春:吉林科学技术出版社,2013:116-145. Guo Wenxiu, Wen Zhiliang, Liu Jianmin, et al. Oil Shale Deposits in Jilin Province[M]. Changchun: Jilin Science and Technology Publishing House, 2013: 116-145.

[25] 于明德,王璞珺,蒋永福,等. 敦化盆地烃源岩地球化学特征及其生烃潜力[J]. 石油实验地质,2008,30( 3) : 270-275. Yu Mingde, Wang Pujun, Jiang Yongfu, et al. Geochemical Characteritics of Source Rocks and Its Hydrocarbon Generation Potential in the Dunhua Basin[J]. Petroleum Geology & Experiment, 2008, 30( 3) : 270-275.

[26] 朱峰. 柳树河盆地和宁安盆地油页岩成藏环境研究[D]. 北京:中国地质大学,2010:9-30. Zhu Feng. Environment Studies of Oil Shale in Liushuhe and Ning'an Basin[D]. Beijing: China University of Geosciences, 2010: 9-30.

[27] 周动力,董青松. 黑龙江宁安盆地古近系油页岩沉积环境分析[J]. 东北石油大学学报,2014,38(1):25-30. Zhou Dongli, Dong Qingsong. Analysis of Sedimentary Environment of Palaeogene Oil Shale in Heilongjiang Ning'an Basin[J]. Journal of Northeast Petroleum University, 2014, 38(1): 25-30.

[28] 柏静儒,韩冰,李梦迪,等. 黑龙江鸡西油页岩综合利用过程能效分析[J]. 东北电力大学学报,2015,35(4):56-61. Bai Jingru, Han Bing, Li Mengdi, et al. Energy Efficiency Analysis of Heilongjiang Jixi Oil Shale Compressive Utilization[J]. Journal of Northeast Dianli University, 2015, 35(4): 56-61.

[29] 姜翠莹. 虎林盆地油页岩沉积特征[J]. 煤炭技术,2009,28(11):132-133. Jiang Cuiying. Oil Shale Sedimentary Features of Hulin Basin[J]. Coal Technology, 2009, 28(11): 132-133.

[30] 张晓畅. 虎林盆地虎1井烃源岩评价及油源对比[J]. 大庆师范学院学报,2012,32(3):110-112. Zhang Xiaochang. Source Rock Evaluation and Oil-Source Correlation of Hu1Well in Hulin Basin[J]. Journal of Daqing Normal University, 2012, 32(3): 110-112.

[31] Carroll A R, Bohacs K M. Stratigraphic Classification of Ancient Lakes: Balancing Tectonic and Climatic Controls[J]. Geology, 1999, 27: 99-102.

[1] 陈晨, 张颖, 朱江, 朱颖, 翟梁皓, 沈国军, 潘栋彬. 油页岩原位开采区注浆封闭浆液优化及其防渗效果实验[J]. 吉林大学学报(地球科学版), 2021, 51(3): 815-824.
[2] 李成博, 宁传奇, 钟长林, 任建超, 徐人吁, 殷淑芹. 中国油页岩矿勘查控制程度探讨[J]. 吉林大学学报(地球科学版), 2021, 51(1): 13-21.
[3] 董志国, 张连昌, 董飞羽, 张帮禄, 谢月桥, 查斌, 彭自栋, 王长乐. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1358-1372.
[4] 李堃, 刘飞, 刘凯, 赵少瑞, 汤朝阳, 段其发. 湘西-黔东地区铅锌矿床找矿模型与定量预测[J]. 吉林大学学报(地球科学版), 2020, 50(3): 825-841.
[5] 海连富, 王磊, 马治军, 徐清海, 宋扬, 白金鹤. 宁夏固原炭山地区中侏罗统延安组油页岩特征及其沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(3): 747-756.
[6] 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404.
[7] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[8] 王嗣敏, 臧东升, 王熙琼, 李杰, 韩嵩, 李建中. 辽西建昌盆地油页岩发育特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 326-340.
[9] 刘招君, 柳蓉, 孙平昌, 孟庆涛, 胡菲. 中国典型盆地油页岩特征及赋存规律[J]. 吉林大学学报(地球科学版), 2020, 50(2): 313-325.
[10] 贾建亮, 刘招君, 孟庆涛, 孙平昌, 徐进军, 柳蓉, 白悦悦. 中国陆相油页岩含油率与总有机碳的响应机理[J]. 吉林大学学报(地球科学版), 2020, 50(2): 368-377.
[11] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[12] 曾文人, 孟庆涛, 刘招君, 徐银波, 孙平昌, 王克兵. 柴北缘团鱼山地区中侏罗统石门沟组油页岩有机地球化学特征及古湖泊条件[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1270-1284.
[13] 马中良, 王强, 郑伦举, 张彩明. 油页岩原位开采温度-时间-转化率判识方法及应用[J]. 吉林大学学报(地球科学版), 2019, 49(2): 394-399.
[14] 日比娅, 孙友宏, 韩婧, 郭明义. 3种无机盐催化热解油页岩[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1043-1049.
[15] 马中良, 郑伦举, 赵中熙. 不同边界条件对油页岩原位转化开采的影响及启示[J]. 吉林大学学报(地球科学版), 2017, 47(2): 431-441.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[2] 周丽萍, 申向东, 李学斌, 白忠强. 天然浮石粉水泥土力学性质的试验研究[J]. J4, 2009, 39(3): 492 -497 .
[3] 黄玉龙, 王璞珺, 邵锐. 火山碎屑岩的储层物性--以松辽盆地营城组为例[J]. J4, 2010, 40(2): 227 -236 .
[4] 赵玉岩,郝立波,张志立,陆继龙,孙广瑞. 金属矿床勘查找矿信息系统的设计与实现[J]. J4, 2008, 38(1): 161 -0166 .
[5] 王祝文,刘菁华,聂春燕. 阵列声波测井信号的时频局域相关能量分析[J]. J4, 2008, 38(2): 341 -0346 .
[6] 卢焱,李健,白雪山,李永占. 地面磁法在隐伏铁矿勘查中的应用--以河北滦平Ⅱ号铁矿为例[J]. J4, 2008, 38(4): 698 -0702 .
[7] 张 辉,李桐林,董瑞霞. 基于电偶源的体积分方程法三维电磁反演[J]. J4, 2006, 36(02): 284 -0288 .
[8] 潘殿琦,张祖培,潘殿彩,陈义民,徐 瑞. 人工冻土纵波波速与温度和含水率的关系[J]. J4, 2006, 36(04): 588 -591 .
[9] 付 哲,周云轩,刘殿伟,刘万崧. 基于特征的面向对象虚拟GIS数据模型设计与原型系统实现[J]. J4, 2006, 36(04): 647 -652 .
[10] 王羽, 许强, 柴贺军, 唐胜传, 冯五一. 基于改进Shannon伪近邻法研究易滑地层位移变形时序[J]. J4, 2011, 41(1): 177 -181 .