吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 119-134.doi: 10.13278/j.cnki.jjuese.201601111
曾忠诚1, 吝路军2, 朱海平1, 刘明2, 梁斌2, 高倩倩2, 彭建明1
Zeng Zhongcheng1, Lin Lujun2, Zhu Haiping1, Liu Ming2, Liang Bin2, Gao Qianqian2, Peng Jianming1
摘要:
分布于帕米尔东北缘羌塘地块上的穷阿木太克岩体,与班公湖怒江洋的闭合有着密切关系。岩体主要由英云闪长岩、花岗闪长岩和二长花岗岩组成。LA-ICP-MS锆石U-Pb测年结果显示,穷阿木太克岩体的形成年龄为(107.0±1.2) Ma(MSWD=0.55),属于早白垩世晚期。地球化学结果显示,主量元素具有富Ca、富K、富碱等特点,岩石Al含量较高,为弱过铝质花岗岩系列,具典型的钙碱性特征。稀土元素具有轻稀土富集、重稀土亏损的右倾型特征,并显示弱的负铕异常。微量元素表现出大离子亲石元素Rb、Th、U、K高度富集和高场强元素Nb、Ta、Ti、Hf强烈亏损。岩石在成因上可能是地壳下部基性岩石经熔融或部分熔融作用形成的。结合本区所处的构造环境,早白垩世晚期穷阿木太克岩体可能形成于羌塘地块与冈底斯地块之间同碰撞(挤压环境)向碰撞后(伸展环境)的转化阶段,为后造山花岗岩类,岩石系列从早到晚由中钾钙碱性系列向钾玄岩系列演化。
中图分类号:
[1] 姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京:地质出版社, 2000:1-10. Jiang Chunfa, Wang Zongqi, Li Jinyi. Opening-Closing Tectonics of Central China Orogen[M]. Beijing:Geological Publishing House, 2000:1-10.[2] 潘浴生. 喀喇昆仑山昆仑山综合科学考察导论[M]. 北京:气象出版社, 1992:1-5. Pan Yusheng. Introduction to Integrated Scientific Investigation on Karakorun and Kunlun Mountains[M]. Beijing:China Meteorological Press, 1992:1-5.[3] Hsu K J, Pan G T, Sengor A M C. Tectonic Evolution of the Tibetan Plateau:A Working Hypothesis Based on the Archipelago Model of Orogenesis[J]. International Geology Review, 1995, 37:473-508.[4] 黄汲清, 陈炳蔚. 中国及邻区特提斯海的演化[M]. 北京:地质出版社, 1987:1-20. Huang Jiqing, Chen Bingwei. The Elolution of the Tehys in China and Adjacent Regions[M]. Beijing:Geological Publishing House, 1987:1-20.[5] 汪玉珍, 方锡廉. 西昆仑山、喀喇昆仑山花岗岩类时空分布规律的初步探讨[J]. 新疆地质, 1987, 5(1):9-24. Wang Yuzhen, Fang Xilian. Priliminary Study on Granite Distribution of Time and Space in West Kunlun-Karakorun Mountains of Xinjiang[J]. Xinjiang Geology, 1987, 5(1):9-24.[6] 潘桂棠, 郑海翔, 徐跃荣, 等. 初论班公湖怒江结合带[C]//青藏高原地质文集. 北京:地质出版社, 1982:229-242. Pan Guitang, Zhang Haixiang, Xu Yuerong, et al. A Preliminary Study on Bangong Co-Nujiang Suture[C]//Geological Memoirs of Qinghai-Xizang Plateau. Beijing:Geological Publishing House, 1982:229-242.[7] 莫宣学, 潘桂棠.从特提斯到青藏高原形成:构造-岩浆事件的约束[J]. 地学前缘, 2006, 13(6):43-51. Mo Xuanxue, Pan Guitang. From the Tethys to the Formation of the Qinghai-Tibet Plateau:Constrained by Tectono-Magmatic Events[J]. Earth Science Frontiers, 2006, 13(6):43-51.[8] Kapp P, Murphy M A, Yin A, et al. Mesozoic and Cenozoic Tectonic Evolution of the Shiquanhe Area of Western Tibet[J]. Tectonics, 2003, 22(4):1029.[9] Pearce J A, Deng W M. The Ophiolites of the Tibet Geotraverse, Lhasa to Golmud (1985) and Lhasa to Kathmandu (1986)[J]. London:Philosophical Transactions of the Royal society, 1988, A327:215-238.[10] 朱弟成, 莫宣学, 赵志丹, 等. 西藏冈底斯带措勤地区则弄群火山岩锆石U-Pb年代学格架及构造意义[J]. 岩石学报, 2008, 24(3):401-412. Zhu Dicheng, Mo Xuanxue, Zhao Zhidan, et al. Zircon U-Pb Geochronology of Zenong Group Volcanic Rocks in Coqen Area of the Gangdese, Tibet and Tectonic Significance[J]. Acta Petrologica Sinica, 2008, 24(3):401-412.[11] 郭铁鹰, 梁定益, 张宜智. 西藏阿里地质[M]. 武汉:中国地质大学出版社, 1991:1-464. Guo Tieying, Liang Dingyi, Zhang Yizhi. Geology of Ngari Tibet (Xizang)[M]. Wuhan:China University of Geosciences Press, 1991:1-464.[12] 许荣科, 郑有业, 赵平甲, 等. 西藏东巧北尕苍见岛弧的厘定及地质意义[J]. 中国地质, 2007, 34(5):768-777. Xu Rongke, Zheng Youye, Zhao Pingjia, et al. Definition and Geological Significance of the Gacangjian Volcanic Arc North of Dongqiao, Tibet[J]. Geology in China, 2007, 34(5):768-777.[13] 杜德道, 曲晓明, 王根厚, 等. 西藏班公湖怒江缝合带西段中特提斯洋盆的双向俯冲:来自岛弧型花岗岩锆石U-Pb年龄和元素地球化学的证据[J]. 岩石学报, 2011, 27(7):1993-2002. Du Dedao, Qu Xiaoming, Wang Genhou, et al. Bidirectional Subduction of the Middle Tethys Oceanic Basin in the West Segment of Bangonghu-Nujiang Suture, Tibet:Evidence from Zircon U-Pb LA-ICP-MS Dating and Petrogeochemistry of Arc Granites[J]. Acta Petrologica Sinica, 2001, 27(7):1993-2002.[14] 曹圣华, 邓世权, 肖志坚, 等. 班公湖怒江结合带西段中特提斯多岛弧构造演化[J]. 沉积与特提斯地质, 2006, 26(4):25-32. Cao Shenghua, Deng Shiquan, Xiao Zhijian, et al. The Archipelagic Arc Tectonic Evolution of the Meso-Tethys in the Western Part of the Bangong Lake-Nujiang Suture Zone[J]. Sedimentary Geology and Tethyan Geology, 2006, 26(4):25-32.[15] 陈玉禄, 江元生. 西藏班戈切里错地区早白垩世火山岩的时代确定及意义[J]. 地质力学学报, 2002, 8(1):43-49. Chen Yulu, Jiang Yuansheng. Age and Significance of Volcanic Rock of Early Cretaceous in the Bange-Qielicuo Area in Tibet[J]. Journal of Geomechanics, 2002, 8(1):43-49.[16] 朱弟成, 潘桂棠, 莫宣学, 等. 青藏高原中部中生代OIB型玄武岩的识别:年代学、地球化学及其构造环境[J]. 地质学报, 2006, 80(9):1312-1328. Zhu Dicheng, Pan Guitang, Mo Xuanxue, et al. Identification for the Mesozoic OIB-Type Basalts in Central Qinghai-Tibetan Plateau:Geochronology, Geochemistry and Their Tectonic Setting[J]. Acta Geologica Sinica, 2006, 80(9):1312-1328.[17] 鲍佩声, 肖序常, 苏犁, 等. 西藏洞错蛇绿岩的构造环境:岩石学、地球化学和年代学制约[J]. 中国科学:D辑, 2007, 37(3):298-307. Bao Peisheng,Xiao Xuchang,Su Li,et al.Geochemical Characteristics and Isotopic Dating for the Dongcuo Ophiolite, Tibet Plateau[J]. Science in China:Series D, 2007, 37(3):298-307.[18] 曲晓明, 辛洪波, 杜德道, 等. 西藏班公湖怒江缝合带中段碰撞后A型花岗岩的时代及其对洋盆闭合时间的约束[J]. 地球化学, 2012, 41(1):1-14. Qu Xiaoming, Xin Hongbo, Du Dedao, et al. Ages of Post-Collisional A-Type Granite and Constraints on the Closure of the Oceanic Basin in the Middle Segment of the Bangonghu-Nujiang Suture, the Tibetan Plateau[J]. Geochimica, 2012, 41(1):1-14.[19] 王春英, 蔺新望, 张俊良, 等. 青藏高原西部甜水海地区白垩纪花岗岩类的岩石学地球化学特征及其地质意义[J]. 地质通报, 2009, 28(5):285-293. Wang Chunying, Lin Xinwang, Zhang Junliang, et al. Petrographical and Geochemical Characteristics of the Cretaceous Granitoids in the Tianshuihai Area, Western Qinghai-Tibet Plateau, China and Its Geological Significance[J]. Geological Bulletin of China, 2009, 28(5):585-593.[20] 耿全如, 潘桂堂, 王立全, 等. 班公湖怒江带、羌塘地块特提斯演化与成矿地质背景[J].地质通报, 2011, 30(8):1261-1274. Geng Quanru, Pan Guitang, Wang Liquan, et al. Tethyan Evolution and Metallogenic Geological Backguound of the Bangong Co-Nujiang Belt and the Qiangtang Massif in Tibet[J]. Geological Bulletin of China, 2011, 30(8):1261-1274.[21] 姚晓峰, 唐菊兴, 李志军, 等. 班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义:来自Hf同位素特征的指示[J].吉林大学学报(地球科学版), 2013, 59(1):193-200. Yao Xiaofeng, Tang Juxing, Li Zhijun, et al. Magma Origin of Two Plutons from Gaerqiong Copper Gold Deposit and It's Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet:Implication from Hf Isotope Characteristics[J]. Journal of Jilin University(Earth Science Edition), 2013, 59(1):193-200.[22] 康磊, 校培喜, 高晓峰, 等. 青藏高原西北缘红其拉甫岩体的岩石成因、时代及其构造意义[J]. 地质学报, 2012, 86(7):1063-1076. Kang Lei, Xiao Peixi, Gao Xiaofeng, et al. The Age and Origin of the Konjirap Pluton in Northwestern Tibetan Plateau and Its Tectonic Significances[J]. Acta Geologica Sinica, 2012, 86(7):1063-1076.[23] 丁道桂, 王道轩, 刘伟新. 西昆仑造山带与盆地[M]. 北京:地质出版社, 1996:1-230. Ding Daogui, Wang Daoxuan, Liu Weixin. West Kunlun Orogenic Belt and Basin[M]. Beijing:Geological Publishing House, 1996:1-230.[24] 李荣社, 计文化, 杨永成, 等. 昆仑山及邻区地质[M]. 北京:地质出版社, 2008:1-400. Li Rongshe, Ji Wenhua, Yang Yongcheng, et al. The Geology in Kunlun Mountain and Adjacent Regions[M]. Beijing:Geological Publishing House, 2008:1-400.[25] Anderson T. Correction of Common Pb in U-Pb Analyses that do not Report 204Pb[J]. Chemical Geology, 2002, 192(1/2):59-79.[26] Ludwig K R. Isoplot/Ex Version 2.49:A Geochro-nological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center Special Publication, 2003, 1a:1-56.[27] Yuan Honglin, Gao Shan, Liu Xiaoming, et al. Accurate U-Pb Age and Trace Element Determinations of Zircon by Laser Ablation-Inductively Coupled Plasma-Mass Spectrometry[J]. Geostandards and Geoanalytical Research, 2004, 28(3):353-370.[28] Rutatto D. Zircon Trace Element Geochemistry:Paritioning with Garnet and the Link Between U-Pb Ages and Metamorphism[J]. Chemcal Geology, 2002, 184:123-138.[29] Vavra G, Gebauer D, Schmid R. Multiple Zircon Growth and Recrystallization During Polyphase Late Carboniferous to Triassic Metamorphism in Granulites of the Ivrea Zone (Southern Alps):An Ion Microprobe (SHRIMP) Study[J]. Contrib Mineral Petrol, 1996, 122:337-358.[30] 吴元保, 郑永飞. 锆石成因矿物学研究及其对U-Pb年龄解释的制约[J]. 科学通报, 2004, 49(16):1589-1604. Wu Yuanbao, Zheng Yongfei. Genesis of Zircon and Its Constraints on Interpretation of U-Pb Age[J]. Chinese Science Bulletin, 2004, 49(16):1589-1604.[31] Boynton W V.Cosmochemistry of the Rare Earth Elements:Meteorite Studies[C]//Henderson P. Rare Earth Elements Geochemistry. Amsterdam:Elsevier, 1984:63-114.[32] Middlemost E A. Magmas and Magmatic Rocks:An Introduction to Igneous Petrology[M]. London:Longman Group United Kingdom, 1985:1-280.[33] Collins W J, Bcams S D, White A J R, et al. Nature and Origin of A-Type Granites with Particular Reference to Southeastern Australia[J]. Contrib Mineral Petrol, 1982, 80:189-200.[34] Sun S S. McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[J]. Geological Society, London, Special Publications, 1989, 42:313-345.[35] 张旗, 王元龙, 金惟俊, 等. 造山前、造山和造山后花岗岩的识别[J].地质通报, 2008, 27(1):1-18. Zhang Qi, Wang Yuanlong, Jin Weijun, et al. Criteria for the Recognition of Pre-,Syn-and Post-Orogenic Granitic Rocks[J]. Geological Bulletin of China, 2008, 27(1):1-18.[36] 赵振华. 关于岩石微量元素构造环境判别图解使用的有关问题[J]. 大地构造与成矿学, 2007, 31(1):92-103. Zhao Zhenhua. How to Use the Trace Element Diagrams to Discriminate Tectonic Settings[J]. Geotectonica et Metallogenia, 2007, 31(1):92-103.[37] Depaolo D J, daley E E. Neodymium Isotopes in Basalts of the Southwest Basin and Rangeand Lithospheric Thinning During Continental Extension[J]. Chenical Geology, 2000, 169:157-185.[38] Taylor S R, McLennan S M. The Continental Crust:Its Composition and Evolution[M]. Oxford:Blackwell Scientific, 1985:1-312.[39] Rollinson H R. Using Geochemical Data:Evaluation, Presentation, Interpretation[M]. London:Pearson Education Limited, 1993:1-278.[40] Boztug D, Harlavan Y, Arehart G B. K-Ar Age, Whole-Rock and Isotope Geochemistry of A-Type Granitoids in the Diverigi-Sivas Region, Eastern-Central Anatolia, Turkey[J]. Lithos, 2007, 97:193-218.[41] Wolf M B, Wyllie P J. The Formation of Tonalitic Liquids During the Vapor-Absent Partial Melting of Amphibplite at 10 kbar[J]. Eos, 1989, 70:506-518.[42] Li Xianhua, Li Zhengxiang, Li Wuxian, et al. U-Pb Zircon, Geochemical and Sr-Nd-Hf Isotopic Constraints on Age and Origin of Jurassic I-and A-Type Granites from Central Guangdong, SE China:A Major Igneous Event in Response to Foundering of a Subducted Flat-Slab?[J]. Lithos, 2007, 96:186-204.[43] 邓晋福, 吴宗絮, 杨建军, 等. 格尔木额济纳旗地学断面走廊域地壳-上地幔岩石学结构与深部过程[J]. 地球物理学报, 1995, 38(增刊Ⅱ):130-144. Deng Jinfu, Wu Zongxu, Yang Jianjun, et al. Crust-Mantle Petrological Structure and Deep Processes Along the Golmud-Ejin Geoscience Section[J]. Chinese Journal of Geophysics, 1995, 38(Sup.2):130-144.[44] Whalen J B, MeNieoll V J, Van Staal, et al. Spatial, Temporal and Geochemical Charaeteristies of Silurian Collision-Zone Magmatism, Newfoundland Appalachians:An Example of a Rapidly Evolving Magmatie System Related to Slab Break-Off[J]. Lithos, 2006, 89:377-404.[45] Nelson K D. Are Crustal Thickness Variations in Old Mountain Belts Like the Appalachians a Consequence of Lithospheric Delamination?[J]. Geology, 1992, 20:498-502.[46] 张旗, 金惟俊, 王元龙. 大陆下地壳拆沉模式初探[J]. 岩石学报, 2006, 22(2):265-276. Zhang Qi, Jin Weijun, Wang Yuanlong. A Model of Delamination of Continental Lower Crust[J]. Acta Petrologica Sinica, 2006, 22(2):265-276.[47] 江元生, 徐天德, 赵友年. 冈底斯山中段措勤地区中新生代花岗岩就位机制及构造环境探讨[J]. 四川地质学报, 2009, 29:103-111. Jiang Yuansheng, Xu Tiande, Zhao Younian. On Emplacement Mechanism and Tectonic Setting for the Mesozoic-Cenozoic Granitoids Rockmasses in the Coqên Region, Middle Gangdisê Mountains[J]. Acta Geologica Sichuan, 2009, 29:103-111.[48] Pearce J A, Harris N B W, Tindle A G. Trace Element Discrimination Diagrams for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology, 1984, 25:956-983.[49] 高顺宝, 郑有业, 王进寿, 等. 西藏班戈地区侵入岩年代学和地球化学:对班公湖怒江洋盆演化时限的制约[J]. 岩石学报, 2011, 27(7):1973-1982. Gao Shunbao, Zheng Youye, Wang Jinshou,et al. The Geochronology and Geochemistry of Intrusive Rocks in Bange Area:Constraints on the Evolution Time of the Bangong Lake-Nujiang Ocean Basin[J]. Acta Petrologice Sinica, 2011, 27(7):1973-1982.[50] 姜耀辉, 杨万志. 青藏高原西部燕山晚期花岗岩地球化学特征及其大地构造意义[J]. 成都理工学院学报, 2000, 27(3):226-231. Jiang Yaohui, Yang Wanzhi. Geochemistry of Late Yanshanian Granite and Its Tectonic Significance in the Western Qinghai-Tibet Plateau[J]. Journal of Chengdu University of Technology, 2000, 27(3):226-231.[51] 毕华, 王中刚, 王元龙, 等. 西昆仑造山带构造-岩浆演化史[J]. 中国科学:D辑, 1999, 29(5):398-406. Bi Hua, Wang Zhonggang, Wang Yuanlong, et al. The Tectonomagmatic Evolution in West Kunlun Orogenic Belt[J]. Science in China:Series D, 1999, 29(5):398-406. |
[1] | 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104. |
[2] | 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134. |
[3] | 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120. |
[4] | 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153. |
[5] | 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625. |
[6] | 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586. |
[7] | 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144. |
[8] | 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164. |
[9] | 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745. |
[10] | 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762. |
[11] | 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783. |
[12] | 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364. |
[13] | 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457. |
[14] | 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470. |
[15] | 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206. |
|