吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (1): 262-269.doi: 10.13278/j.cnki.jjuese.201601303

• 地球探测与信息技术 • 上一篇    下一篇

基于经验模态分解(EMD)的小波熵阈值地震信号去噪

刘霞1, 黄阳1, 黄敬2, 段志伟1   

  1. 1. 东北石油大学电气信息工程学院, 黑龙江大庆 163318;
    2. 四川石油天然气建设工程有限责任公司, 成都 610000
  • 收稿日期:2015-01-23 出版日期:2016-01-26 发布日期:2016-01-26
  • 通讯作者: 黄阳(1990),男,研究生,主要从事控制理论与控制工程研究,E-mail:huangyang_nepu@163.com E-mail:huangyang_nepu@163.com
  • 作者简介:刘霞(1970),女,教授,主要从事信号处理、鲁棒滤波、网络控制系统等研究,E-mail:liuxia2k@163.com
  • 基金资助:

    黑龙江省自然科学基金项目(F201404)

Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD)

Liu Xia1, Huang Yang1, Huang Jing2, Duan Zhiwei1   

  1. 1. School of Electrical Engineering & Information, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Sichuan Petroleum Construction CO. LTD, Chengdu 610000, China
  • Received:2015-01-23 Online:2016-01-26 Published:2016-01-26
  • Supported by:

    Supported by Natural Science Foundation of Heilongjiang Province(F201404)

摘要:

针对EMD阈值去噪算法中阈值由经验选取以及无法有效区分各固有模态函数上有用信息的不足,本文对各固有模态函数进行小波变换,对各层小波系数进行相关处理,以突出有效信息,抑制噪声;将细节系数的有效信号和突变点置零并等分为若干区间,选取小波熵最大子区间的高频小波系数平均值作为噪声方差计算得到阈值。该阈值选取方法依据小波熵的特点,自适应地根据对应尺度上信号自身的能量特征确定该尺度阈值。将该算法应用于仿真信号和实际地震信号去噪,结果表明该方法优于基于EMD的小波阈值去噪,在提高去噪效果的同时,也更好地保护有效信号。

关键词: 经验模态分解, 小波熵, 随机噪声压制, 信噪比

Abstract:

In view of the threshold of empirical mode decomposition (EMD) threshold denoising algorithm selected by experience, and its inability to effectively distinguish useful information in the intrinsic mode function, the authors use the wavelet transform of the intrinsic mode function to process each layer of wavelet coefficients so as to highlight the effective information and suppress noise. After the effective signals and the mutation points of the detail coefficients are set to zero, the new detail coefficients are equally divided into several intervals. We select the wavelet entropy as the high frequency wavelet coefficients of the architectural interval average noise variance, and calculated the threshold value. The threshold selection method is based on the characteristics of the wavelet entropy, adapted to the energy characteristics of the corresponding scale signal itself in determination of the scale of the threshold. The algorithm is applied to the simulation signals and real seismic signal denoising. The results show that the method is better than that of the wavelet threshold denoising based on EMD; at the same time it can better protect the effective signals.

Key words: empirical mode decomposition (EMD), wavelet entropy threshold, random noise suppression, SNR

中图分类号: 

  • P631.4

[1] 王玉英.地震勘探信号降噪处理技术研究[D].大庆:大庆石油学院,2006:1-8. Wang Yuying.Seismic Prospecting Signal Denoise Disposal Technology Research[D].Daqing:Daqing Petroleum Institution,2006:1-8.

[2] 朱晓明.工程地震信号去噪技术研究[D].青岛:中国海洋大学,2007:1-14. Zhu Xiaoming.Research of Engneering Seismic Data Denoise Disposal Technology[D].Qingdao:Ocean University of China,2007:1-14.

[3] 巩向博,韩立国,王恩利,等.压制噪声的高分辨率Radon变换法[J].吉林大学学报(地球科学版),2006,39(1):152-157. Gong Xiangbo,Han Liguo,Wang Enli,et al.Denoising via High Resolution Radon Transform[J].Journal of Jinlin University(Earth Science Edition),2006,39(1):152-157.

[4] 张孝珍,董汉强,侯国文,等.地震勘探中的去噪技术新进展[J].勘探地球物理进展,2009,32(3):172-178. Zhang Xiaozhen,Dong Hanqiang,Hou Guowen,et al.Advances in Seismic Exploration Technology Denoising[J].Progress in Exploration Geophysics,2009,32(3):172-178.

[5] Candes E,Demanet L,Donoho D,et al.Fast Discrete Curvelet Transforms[J].Multiscal Modeling and Simulation,2006,5(3):861-899.

[6] 魏童.小波变换在探地雷达信号中的应用[D].西安:长安大学,2009:14-18. Wei Tong.The Application of Wavelet Transform for GPR Signal[D].Xi'an:Chang'an University,2009:14-18.

[7] Donoho D.De-Noising by Soft-Thresholding[J].IEEE Trans on IT,1995,3:613-627.

[8] Huang N E,Shen Z,Long S R,et al.The Empirical Mode Decomposition and the Hilbert Spectrum for Nonlinear and Non-Stationary Time Series Analysis[J].Proc Rsoc Lond,1998,454:56-78.

[9] 王婷.EMD算法研究及其在信号去噪中的应用[D].哈尔滨:哈尔滨工程大学,2010. Wang Ting.Research on EMD Algorithm and Its Application in Signal Denoising[D].Harbin:Harbin Engineering University,2010.

[10] Huang N E.Review of Empirical Mode Decompo-sition Analysis[J].Proc of SPIE,2001(4391):71-79.

[11] 杜修力,何立志,侯伟.基于经验模态的(EMD)的小波阈值除噪方法[J].北京工业大学学报,2007,33(3):264-271. Du Xiuli,He Lizhi,Hou Wei.A Study of Wavelet Threshold Denoising Based on Empirical Mode Decomposition(EMD)[J].Journal of Beijing University of Technology,2007,33(3):264-271.

[12] 李文,刘霞,段玉波,等.基于小波熵与相关性相结合的小波模极大值地震信号去噪[J].地震学报,2012,34(6):841-850. Li Wen,Liu Xia,Duan Yubo,et al.Wavelet Modulus Maxima Denoising of Seismic Signals Based on Combined Wavelet Entropy and Correlation[J].Acta Seismologica Sinica,2012,34(6):841-850.

[13] 李文,刘霞,段玉波,等.基于小波熵和相关性的高分辨率阈值去噪方法[J].数据采集与处理,2013,28(3):371-375. Li Wen,Liu Xia,Duan Yubo,et al.High-Resolution Threshold Denoising Method Based on Wavelet Entropy and Correlation[J].Journal of Data Acquisition and Processing,2013,28(3):371-375.

[14] Rosso S A,Blanco S,Yordanova J,et al.Wavelet En-tropy:A New Tool for Analysis of Short Duration Brain Electrical Signals[J].Journal of Neuroscience Methods,2001,105:65-75.

[15] 吴雅娟,高兴,王辉,等.改进的小波阈值法在测井曲线去噪中的应用[J].计算机系统应用,2013,22(3):182-185. Wu Yajuan,Gao Xing,Wang Hui,et al.Application of Improved Wavelet Threshold Method to Logging Curves Denoising[J].Computer Systems & Applications,2013,22(3):182-185.

[16] 徐明林.基于小波降噪和经验模态分解的滚动轴承故障诊断[D].哈尔滨:哈尔滨工业大学,2013. Xu Minglin.Fault Diagnosis of Rolling Element Bearing Based on Wavelet Denoising and Empirical Mode Decomposition[D].Harbin:Harbin Institute of Technology,2013.

[1] 蔡剑华, 肖晓. 基于组合滤波的矿集区大地电磁信号去噪[J]. 吉林大学学报(地球科学版), 2017, 47(3): 874-883.
[2] 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644.
[3] 秦喜文, 刘媛媛, 王新民, 董小刚, 张瑜, 周红梅. 基于整体经验模态分解和支持向量回归的北京市PM2.5预测[J]. 吉林大学学报(地球科学版), 2016, 46(2): 563-568.
[4] 刘财, 崔芳姿, 刘洋, 王典, 刘殿秘, 张鹏. 基于低信噪比条件下新型Seislet变换的阈值去噪方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 293-301.
[5] 贾海青, 姜弢, 徐学纯, 葛利华, 林君, 杨志超. 可控震源记录中的脉冲噪声分析[J]. 吉林大学学报(地球科学版), 2015, 45(1): 302-311.
[6] 王正海,耿欣,姚卓森,胡光道,方臣. 基于经验模态分解的MT数据脉冲类电磁噪声处理[J]. 吉林大学学报(地球科学版), 2014, 44(1): 344-349.
[7] 王祝文, 王晓丽, 刘菁华, 张雪昂, 向旻, 杨闯. 裂缝性地层声波测井的联合时频特征[J]. J4, 2012, 42(4): 914-920.
[8] 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844.
[9] 佴磊, 彭文, 袁明哲, 周能娟. 基于经验模态分解和加权最小二乘支持向量机的采空区地面塌陷预测[J]. J4, 2011, 41(3): 799-804.
[10] 刘财, 冯智慧, 谢金娥, 冯晅, 王典. 基于四阶累积量的同相轴自动拾取方法[J]. J4, 2010, 40(5): 1188-1193.
[11] 葸晓宇,刘 洪. HHT方法在研究地震旋回体中的应用[J]. J4, 2007, 37(3): 624-0628.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!