吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (1): 234-240.doi: 10.13278/j.cnki.jjuese.20160339

• 地质工程与环境工程 • 上一篇    下一篇

乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水

董军, 徐暖, 刘同喆, 管锐, 邓俊巍   

  1. 吉林大学环境与资源学院/地下水资源与环境教育部重点实验室, 长春 130021
  • 收稿日期:2017-03-29 出版日期:2018-01-26 发布日期:2018-01-26
  • 作者简介:董军(1976-),男,教授,博士生导师,主要从事污染场地的模拟、控制与修复等方面的研究,E-mail:dongjun@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41530636)

Indigenous Microbial Remediation of Middle-High Concentration Cr(Ⅵ) Contaminated Groundwater Enhanced by Emulsified Vegetable Oil

Dong Jun, Xu Nuan, Liu Tongzhe, Guan Rui, Deng Junwei   

  1. College of Environment and Resources/Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
  • Received:2017-03-29 Online:2018-01-26 Published:2018-01-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41530636)

摘要: 以天然细砂为微生物来源,模拟研究了乳化植物油强化原位生物修复中高浓度Cr(Ⅵ)污染地下水的可行性,考察了修复效果及修复过程中地下水质变化及产物的稳定性。结果表明,反应77 d后,Cr(Ⅵ)质量浓度分别从20.0、30.0、50.0、80.0、110.0 mg/L降低到0.0、5.8、19.0、43.6、65.8 mg/L,去除率分别为100.0%、80.7%、61.9%、45.5%、40.2%。反应后介质中Cr形态分析表明,其主要以能在自然条件下稳定存在的铁锰结合态和有机结合态形式存在。此外,随反应进行,实验体系逐渐呈弱酸性环境,pH为5.80~6.70。当Cr被完全还原后,体系会发生异化铁还原,Fe(Ⅱ)质量浓度逐渐升高,最高可达117.0 mg/L,最终形成二价铁矿物。综上所述,天然细砂介质中的土著微生物能够利用乳化植物油强化并还原地下水中的中、高浓度Cr(Ⅵ),且产物能够在自然状态下稳定存在,修复过程对地下环境的影响较小。

关键词: 地下水, 铬污染, 乳化植物油, 异化铁还原

Abstract: A batch of experiments were conducted to investigate the feasibility and efficiency of in situ biostimulation for indigenous microbial community to remove Cr (Ⅵ) contamination in groundwater ranged from 20.0 to 110.0 mg/L. The results indicated that after 77 days of reaction, the Cr(Ⅵ) concentration decreased from an initial value of 20.0, 30.0, 50.0, 80.0, 110.0 mg/L to 0.0, 5.8, 19.0, 43.6 and 65.8 mg/L respectively,with the removal efficiency of 100.0%, 80.7%, 61.9%, 45.5%, 40.2% correspondingly. The sediment analysis demonstrated that the reduced Cr was combined stably with Fe-Mn oxides and organic matter in natural environment. In addition, with the reaction progress, the reaction system was gradually changed to acid condition, and pH was 5.80-6.70. The dissimilatory iron reduction occurred after Cr (Ⅵ) was completely consumed, with an increasing of aqueous Fe (Ⅱ) concentration, and its maximum concentration of Fe (Ⅱ) reached to 117.0 mg/L. Overall, the Cr (Ⅵ) that concentrated up to 110.0 mg/L can still be reduced by microorganisms in the natural fine sands through emulsified vegetable oil amendment, and the products are stable under natural conditions with little impact on a subsurface environment.

Key words: groundwater, Cr (Ⅵ) contamination, emulsified vegetable oil, reduction of dissimilatory iron

中图分类号: 

  • X523
[1] 杨维,王立东,徐丽,等. 铬污染地下水的PRB反应介质筛选及修复实验[J]. 吉林大学学报(地球科学版),2008,38(5):854-858. Yang Wei, Wang Lidong, Xu Li, et al. Experiment on Selection of PRB Media and Remediation of Chromium Contaminated Groundwater[J]. Journal of Jilin University (Earth Science Edition), 2008, 38(5): 854-858.
[2] 刘海龙,马小龙,袁欣,等. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版),2016,46(6):1823-1829. Liu Hailong, Ma Xiaolong, Yuan Xin, et al. Risk Assessment Method of Chromium (Ⅵ) Polluting Groundwater Based on Multiple Regression Analysis[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6): 1823-1829.
[3] Francis C A, Obraztsova A Y, Tebo B M. Dissi-milatory Metal Reduction by the Facultative Anaerobe Pantoea Agglomerans SP1[J]. Applied and Environmental Microbiology, 2000,66(2):543-548.
[4] Tebo B M, Obraztsova A Y. Sulfate-Reducing Bac-terium Grows with Cr(Ⅵ), U(Ⅵ), Mn (Ⅳ) and Fe(Ⅱ) as Electron Acceptors[J]. Fems Microbiology Letters, 2006,162(1):193-198.
[5] 孟凡生. 中国铬渣污染场地土壤污染特征[J]. 环境污染与防治,2016,38(6):50-53. Meng Fansheng. Pollution Characteristics of Soils Polluted by Chromium Slag in China[J]. Environmental Pollution and Control, 2016, 38(6): 50-53.
[6] 张森琦,王建荣,李其江,等. 青海海晏海北化工厂地下水Cr(Ⅵ)污染机理及治理方案[J]. 现代地质,2009,23(1):94-102. Zhang Senqi, Wang Jianrong, Li Qijiang, et al. Cr (Ⅵ)-Pollution Mechanism and Control Method of Groundwater in Haibei Chemical Plant of Haiyan County, Qinghai Province[J]. Geoscience, 2009, 23(1): 94-102.
[7] 王凤花,罗小三,林爱军,等.土壤铬(Ⅵ)污染及微生物修复研究进展[J]. 生态毒理学报,2010,5(2):153-161. Wang Fenghua, Luo Xiaosan, Lin Aijun, et al. Process on Microbial Remediation of Chromium-Contaminated Soil[J]. Asian Journal of Ecotoxicology, 2010, 5(2): 153-161.
[8] 黄顺红,杨志辉,柴立元,等. 铬渣堆放场中金属铬对周边土壤微生物毒性效应[J]. 中南大学学报(自然科学版),2009,40(1):25-30. Huang Shunhong, Yang Zhihui, Chai Liyuan, et al. Toxicity of Metal Chromium to Microorganism Activities in Soil Around Chromium-Containing Slagheap[J]. Journal of Central South University (Science and Technology), 2009, 40(1): 25-30.
[9] Guoping T, Watson D B, Wei M W, et al. U(Ⅵ) Bioreduction with Emulsified Vegetable Oil as the Electron Donor:Model Application to a Field Test[J]. Environmental Science And Technology, 2013,47(7):3218-3225.
[10] Tessier A,Campbell P G C, Bisson M. Sequential Extraction Procedure for the Speciation of Particulate Trace Metals[J]. Analytical Chemistry, 1979,51(7): 844-851.
[11] 汤洁,王卓行,徐新华. 铁屑-微生物协同还原去除水体中Cr(Ⅵ)研究[J]. 环境科学, 2013,34(7):2650-2657. Tang Jie, Wang Zhuoxing, Xu Xinhua. Removal of Cr (Ⅵ) by Iron Filings with Microorganisms to Recover Iron Reactivity[J]. Environmental Science, 2013,34(7):2650-2657.
[12] 毛晖,曲东,周莉娜. 稻田土壤中添加不同浓度铬对异化铁还原和铬还原的影响[J]. 中国农学通报, 2005,21(6):235-237. Mao Hui, Qu Dong, Zhou Lina. Effect of Variant Chromate and Ferrihydrite on Dissimilatory Fe (Ⅲ) Reduction in Paddy Soil[J]. Chinese Agricultural Science Bulletin, 2005,21(6):235-237.
[13] 黎慧娟,彭静静. 异化Fe (Ⅲ)还原微生物研究进展[J]. 生态学报,2012,32(5):1633-1642. Li Huijuan, Peng Jingjing. Recent Advances in Studies on Dissimilatory Fe (Ⅲ) -Reducing Microorganisms[J]. Acta Ecologica Sinica, 2012,32(5):1633-1642.
[14] Peng L, Liu Y, Gao S H, et al. Assessing Chromate Reduction by Dissimilatory Iron Reducing Bacteria Using Mathematical Modeling[J]. Chemosphere, 2015,139:334-339.
[15] 陈子方. 工业糖浆原位修复Cr (Ⅵ)污染地下水反应机理及效能实验研究[D]. 长春:吉林大学,2016:30-34. Chen Zifang. Study on the Mechanisms and Efficiency of In-Situ Remediation of Cr (Ⅵ) Contaminated Groundwater with Syrup[D]. Changchun: Jilin University, 2016: 30-34.
[16] Eric E R, Matilde M U. Influence of Biogenic Fe(Ⅱ) on Bacterial Crystalline Fe(Ⅲ) Oxide Reduction[J]. Geomicrobiology Journal, 2002,19(2):209-251.
[17] Thomas B, Ruben K, Andreas K, et al. Biogeoche-mical Redox Processes and Their Impact on Contaminant Dynamics[J]. Environmental Science and Technology, 2010,44(1):15-23.
[18] 张兰英,刘娜,王显胜.现代环境微生物技术[M]. 3版. 北京:清华大学出版社, 2005:127,139-142. Zhang Lanying, Liu Na, Wang Xiansheng. Modern Environmental Microbial Technology[M].3rd ed. Beijing: Tsinghua University Press, 2005:127,139-142.
[19] Boris F, Hazen T C, Long P E, et al. In Situ Long-Term Reductive Bioimmobilization of Cr (Ⅵ) in Groundwater Using Hydrogen Release Compound[J]. Environmental Science And Technology, 2008,42(22):8478-8485.
[20] Hansel C M, Wielinga B W, Fendorf S. Structural and Compositional Evolution of Cr/Fe Solids After Indirect Chromate Reduction by Dissimilatory Iron-Reducing Bacteria[J]. Geochimica Et Cosmochimica Acta, 2003,67(3):401-412.
[21] Guertin J, Jacobs J, Avakian C P. Chromium(Ⅵ) Handbook[M]. Boca Raton: CRC Press, 2004:71-72.
[22] Paul L, Smolders E. Inhibition ofIron(Ⅲ) Minerals and Acidification on the Reductive Dechlorination of Trichloroethylene[J]. Chemosphere, 2014,111:471-477.
[23] Borden R C. Effective Distribution of Emulsified Edi-ble Oil for Enhanced Anaerobic Bioremediation[J]. Journal of Contaminant Hydrology, 2007,94(1/2):1-12.
[24] Li Z, Wrenn B A, Venosa A D. Effect ofIron on the Sensitivity of Hydrogen, Acetate, and Butyrate Metabolism to Inhibition by Long-Chain Fatty Acids in Vegetable-Oil-Enriched Freshwater Sediments[J]. Water Research, 2005,39(13):3109-3119.
[25] Robert C B, B Ximena Rodriguez. Evaluation of Slow Release Substrates for Anaerobic Bioremediation[J]. Bioremediation Journal, 2006,10(1):59-69.
[26] 生贺.乳化油反应带强化修复Cr (Ⅵ)污染地下水研究[D]. 长春:吉林大学,2015:38-40. Sheng He. Study on Enhanced Remediation of Cr(Ⅵ) Contaminated Groundwater by Emulsified Oil Reaction Zone[D]. Changchun: Jilin University, 2015:38-40.
[27] 张垒. 铬污染的城市土壤毒性与修复研究[D]. 成都:四川农业大学,2012:6-7. Zhang Lei. Toxicity of Chromium Contaminated in Urban Soiland Phytoremediation[D]. Chengdu: Sichuan Agricultural University, 2012:6-7.
[1] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[2] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[3] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[4] 刘国庆, 吴时强, 范子武, 周志芳, 谢忱, 乌景秀, 柳杨. 回灌与回扬物理过程的解析推导及灌压变化规律[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1799-1807.
[5] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
[6] 袁晓婕, 郭占荣, 黄磊, 章斌, 马志勇, 刘洁. 用镭-226示踪胶州湾的海底地下水排泄[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1490-1500.
[7] 杨悦锁, 张戈, 宋晓明, 温玉娟, 张文卿. 地下水和土壤环境中雌激素运移和归宿的研究进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1176-1190.
[8] 陈盟, 吴勇, 高东东, 常鸣. 广汉市平原区浅层地下水化学演化及其控制因素[J]. 吉林大学学报(地球科学版), 2016, 46(3): 831-843.
[9] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[10] 危润初, 肖长来, 方樟. 黑龙江建三江地区地下水动态趋势突变点分析[J]. 吉林大学学报(地球科学版), 2016, 46(1): 202-210.
[11] 赵林, 莫惠婷, 郑义. 滨海盐碱地区包气带中淡水透镜体维持机理[J]. 吉林大学学报(地球科学版), 2016, 46(1): 195-201.
[12] 蒋秀姿, 文宝萍, 蒋树, 冯传煌, 赵成, 李瑞冬. 甘肃舟曲锁儿头滑坡活动的主控因素分析[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1798-1807.
[13] 吴鸣, 吴剑锋, 施小清, 刘杰, 陈干, 吴吉春. 基于谐振子遗传算法的高效地下水优化管理模型[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1485-1492.
[14] 余楚, 张翼龙, 孟瑞芳, 曹文庚. 河套平原浅层地下水动态监测网优化设计[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1173-1179.
[15] 王宇, 卢文喜, 卞建民, 侯泽宇. 三种地下水位动态预测模型在吉林西部的应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(3): 886-891.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!