吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1191-1198.doi: 10.13278/j.cnki.jjuese.201604205
董德明, 曹珍, 闫征楚, 花修艺, 朱磊, 徐阳, 郭志勇, 梁大鹏
Dong Deming, Cao Zhen, Yan Zhengchu, Hua Xiuyi, Zhu Lei, Xu Yang, Guo Zhiyong, Liang Dapeng
摘要:
本研究采用臭氧-超声(O3/US)联用技术处理聚乙烯醇(PVA)废水,分别考察了PVA初始质量浓度、初始pH、臭氧通入速率、超声功率、超声频率及反应时间对PVA和COD去除效率的影响,并在此基础上通过正交实验确定了降解PVA和COD的最佳实验条件。研究结果表明,超声频率对去除率有显著影响,PVA初始质量浓度对去除效率的影响较大,反应时间、超声功率、臭氧通入速率和初始pH的影响相对较小。通过影响实验和正交实验确定的最佳降解条件为:PVA初始质量浓度100 mg/L、初始pH=9、臭氧通入速率4 g/h、超声功率320 W、超声频率40 kHz、反应时间20 min,此时COD和PVA的去除效率分别为86.4%和99.3%。超声对臭氧降解聚乙烯醇废水具有明显的协同作用,在最佳条件下,臭氧-超声联用技术比单独臭氧技术对PVA的去除率增加了5.1%,对COD去除率增加了19.4%。
中图分类号:
[1] 荆国华, 周作明, 李艳, 等. 臭氧氧化及其他强化技术协同降解聚乙烯醇[J]. 环境工程学报, 2008, 2(12): 1594-1598. Jing Guohua, Zhou Zuoming, Li Yan, et al. Degradation of Polyvinyl Alcohol by Ozone and Other Technology[J]. Journal of Environmental Engineering, 2008, 2(12): 1594-1598.[2] Wang Jianlong, Xu Lejin. Advanced Oxidation Processes for Wastewater Treatment: Formation of Hydroxyl Radical and Application[J]. Critical Reviews in Environmental Science and Technology, 2012, 42(3): 251-325.[3] Sun Yingying, Hua Xiuyi, Ge Rui, et al. Investigation on Pretreatment of Centrifugal Mother Liquid Produced in the Production of Polyvinyl Chloride by Air-Fenton Technique[J]. Environmental Science and Pollution Research, 2013, 20(8): 5797-5805.[4] Kummerer K. Antibiotics in the Aquatic Environment: A Review Part I[J]. Chemosphere, 2009, 75(4): 417-434.[5] 孙振世, 杨晔, 陈英旭. UV-TiO2-H2O 悬浮体系光催化降解聚乙烯醇[J]. 太阳能学报, 2004, 25(6): 760-763. Sun Zhenshi, Yang Ye, Chen Yingxu. Degradation of Polyvinyl Alcohol by UV-TiO2-H2O Photocatalysis Suspension System[J]. Journal of Solar Energy, 2004, 25(6):760-763.[6] Lei L, Hu X, Yue P L, et al. Oxidative Degradation of Polyvinyl Alcohol by the Photochemically Enhanced Fenton Reaction[J]. Journal of Photochemistry and Photobiology:A: Chemistry, 1998, 116(2): 159-166.[7] 刘娜,王柳,邱华,等. 生物炭催化过硫酸盐脱色偶氮染料金橙Ⅱ[J]. 吉林大学学报(地球科学版), 2014, 44(6): 2000-2009. Liu Na, Wang Liu, Qiu Hua, et al. Biochar Catalyzed Persulfate Decoloration of Azo Dye Acid Orange 7[J]. Journal of Jilin University (Earth Science Edition), 2014, 44(6): 2000-2009.[8] 孙莹莹, 郭爱桐, 葛睿, 等. 铁碳微电解法预处理聚氯乙烯 (PVC) 离心母液废水[J]. 环境科学与技术, 2014, 37(4): 139-144. Sun Yingying, Guo Aitong, Ge Rui, et al. Pre-Treatment of Centrifugal Mother Liqiud in Polyvinyl Chloride Production by Iron-Carbon Microelectrolysis Technique[J]. Environmental Science and Technology, 2014, 37(4): 139-144.[9] 邹东雷, 李萌, 邹昊辰, 等. 新型铁碳微电解填料处理含苯污染地下水的实验[J]. 吉林大学学报(地球科学版), 2010, 40(6):1441-1445. Zou Donglei, Li Meng, Zou Haochen, et al. Treatment of Benzene in Simulated Polluted Groundwater by New Iron-Carbon Micro-Electrolysis Packing[J]. Journal of Jilin University(Earth Science Edition), 2010, 40(6):1441-1445.[10] 刘春芳. 臭氧高级氧化技术在废水处理中的研究进展[J]. 石化技术与应用, 2002, 20(4): 278-280. Liu Chunfang. The Development of the Advanced Oxidation Technologies of Ozone Wastewater Treatment[J]. Petrochemical Technology and Application, 2002, 20(4): 278-280.[11] Tezeanli-Guyer G, InceN H. Individual and Combined Effects of Ultrasound, Ozone and UV Irradiation: A Case Study with Textile Dyes[J]. Ultrasonics ,2004, 21(8): 895-900.[12] Beltrán F J, Encinar J M, Alonso M A. Nitroaromatic Hydrocarbon Ozonation in Water: 1: Single Ozonation[J]. Industrial and Engineering Chemistry Research, 1998, 37(1): 25-31.[13] Goncalves A G, Orfao J J, Pereira M F. Catalytic Ozonation of Sulphamethoxazole in the Presence of Carbon Materials: Catalytic Performance and Reaction Pathways[J]. Journal of Hazardous Materials, 2012, 239/240(15): 167-174.[14] Beltrán F J, Rivas F J, Montero-de-Espinosa R: Iron Type Catalysts for the Ozonation of Oxalic Acid in Water[J]. Water Research, 2005, 39(15): 3553-3564.[15] 阳立平. 超声臭氧强化处理高浓度有机废水研究[D].昆明:昆明理工大学, 2004. Yang Liping, Ultrasonic Ozone Strengthening Treatment of High Concentration Organic Wastewater[D]. Kunming: Kunming University of Science and Technology, 2004.[16] Zhou Xianjiao, Guo Wanqian, Yang Shanshan, et al. Ultrasonic-Assisted Ozone Oxidation Process of Triphenylmethane Dye Degradation: Evidence for the Promotion Effects of Ultrasonic on Malachite Green Decolorization and Degradation Mechanism[J]. Bioresource Technology. 2013, 128(1): 827-830.[17] 葛睿, 闫征楚, 曹珍, 等. 聚氯乙烯离心母液的臭氧氧化法预处理研究[J].环境科学与技术, 2015, 38(11): 194-199. Ge Rui, Yan Zhengchu, Cao Zhen, et a1 .Pre-Treatment of Centrifugal Mother Liquid in Polyvinyl Chloride Production by Ozonation Technique[J]. Environmental Science and Technology, 2015, 38 (11): 194-199.[18] 李茂双, 张龙, 田正菊, 等. 聚氯乙烯废水处理及回用研究[J]. 齐鲁石油化工, 2001, 29(3): 211-214. Li Maoshuang, Zhang Long, Tian Zhengju, et al. Polyvinyl Chloride Wastewater Treatment and Reuse Research[J]. Qilu Petrochemical, 2001, 29(3): 211-214.[19] 张凌, 钟先锦, 常志显, 等. 超声波光催化协同降解对甲基苯磺酸[J]. 化学通报, 2011, 74(1): 83-87. Zhang Ling, Zhong Xianjin, Chang Zhixian, et al. Ultrasonic Wave Optical Catalytic Degradation of Methyl Benzene Sulfonic Acid[J]. Chemistry, 2011, 74(1): 83-87.[20] Mallakpour S, Madani M, Roshandel S. Applications of Ultrasound for Modification of Zinc Oxide and Fabrication of Optically Active Poly (Amide-Imide)/Zinc Oxide Bionanocomposites[J]. Designed Monomers and Polymers, 2014, 17(4): 364-371.[21] Saccani G, Bernasconi M, Antonelli M. Optimization of Low Energy Sonication Treatment for Granular Activated Carbon Colonizing Biomass Assessment[J]. Environmental Technology, 2014, 35(7): 851-858.[22] Martins A B, Schein M F, Friedrich J L, et al. Ultrasound-Asisted Butyl Acetate Synthesis Catalyzed by Novozym 435: Enhanced Activity and Operational Stability[J]. Ultrasonics Sonochemistry, 2013, 20(5): 1155-1160.[23] 高乃云, 张可佳. 超声联合臭氧在水处理中的反应机理及应用[J]. 净水技术, 2008, 27(3): 1-4. Gao Naiyun, Zhang Kejia. Ultrasonic Joint Reaction Mechanism and Application of Ozone in Water Treatment[J]. Water Purification Technology, 2008, 27(3): 1-4.[24] Richardson B J, Larn P K S, Martin M. Emerging Chemicals of Concern: Pharmaceuticals and Personal Care Products (PPCPs) in Asia, with Particular Reference to Southern China[J]. Marine Pollution Bulletin, 2005, 50(9): 913-920.[25] Ji G, Zhang B, Wu Y. Combined Ultrasound/Ozone Degradation of Carbazole in APG1214 Surfactant Solution[J]. Journal of Hazardous Materials, 2012, 225/226(10):1-7.[26] 李莹. 非均相催化臭氧氧化降解草酸的实验研究[D].长春:吉林大学, 2011. Li Ying. Degradation of Oxalic Acid by Heterogeneous Catalytic Ozone[D].Changchun: Jilin University, 2011.[27] 董德明, 宋兴, 花修艺, 等. 吉林省典型废水COD与TOC的相关关系及其形成机制和影响因素[J]. 吉林大学学报(地球科学版), 2012, 42(5): 742-752. Dong Deming, Song Xing, Hua Xiuyi, et al. Relationship Between COD and Wastewaters in Jilin Province and Main Influencing TOC of Typical and Mechanism Factors[J]. Journal of Jilin University (Earth Science Edition), 2012, 42(5): 742-752.[28] 代琳琳. 臭氧预氧化在酵母废水处理中的应用研究[D].北京:北京市环境保护科学研究院, 2012. Dai Linlin. Ozone Oxidation in the Application of Yeast Wastewater Treatment Research[D].Beijing: The Environmental Protection Science Research Institute of Beijing, 2012.[29] 顾立勇. 超声臭氧协同复合氧化物体系光催化的研究[D].镇江:江苏大学,2010. Gu Liyong. Synergism of Ultrasound, Ozone and Photocatalysis with Composite Oxide System[D]. Zhenjiang: Jiangsu University, 2010.[30] Yang S S, Guo W Q, Cao G L, et al. Simultaneous Waste Activated Sludge Disintegration and Biological Hydrogen Production Using an Ozone/Ultrasound Pretreatment[J]. Bioresource Technology, 2012, 124(3): 347-354.[31] Behera S K, Kim H W, Oh J E, et al. Occurrence and Removal of Antibiotics, Hormones and Several Other Pharmaceuticals in Wastewater Treatment Plants of the Largest Industrial City of Korea[J]. The Science of the Total Environment, 2011, 409(20): 4351-4360.[32] Hauptmann M, Frederickx F. Enhancement of Cavitation Activity and Particle Removal with Pulsed High Frequency Ultrasound and Supersaturation[J]. Ultrasonics Sonochemistry, 2013, 20(1): 69-76. |
[1] | 王洪桥, 白玉, . 紫外/氯工艺对水中微囊藻毒素的去除[J]. 吉林大学学报(地球科学版), 2022, 52(1): 222-. |
[2] | 王志恒, 梁永平, 申豪勇, 赵春红, 唐春雷, 谢浩, 赵一. 自然与人类活动叠加影响下晋祠泉域岩溶地下水动态特征[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1823-1837. |
[3] | 周彤, 商广明, 翟亚峰. 路基砾类填料土动力特性影响因素试验分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1482-1489. |
[4] | 刘金萍, 王改云, 简晓玲, 王嘹亮, 杜民, 成古. 北黄海东部次盆地层序地层格架中烃源岩发育特征与影响因素[J]. 吉林大学学报(地球科学版), 2020, 50(1): 1-17. |
[5] | 计玮. 致密砂岩气储层气水相渗特征及其影响因素——以鄂尔多斯盆地苏里格气田陕234-235井区盒8段、山1段为例[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1540-1551. |
[6] | 朱广祥, 郭秀军, 余乐, 孙翔, 贾永刚. 高黏粒含量海洋土电阻率特征分析及模型构建[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1457-1465. |
[7] | 尹崧宇, 赵大军. 超声波振动下不同应力条件对岩石强度影响的试验[J]. 吉林大学学报(地球科学版), 2019, 49(3): 755-761. |
[8] | 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649. |
[9] | 刘娜, 丁吉阳, 于庆民, 张思达, 赵宏君, 吕春欣. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1831-1837. |
[10] | 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798. |
[11] | 张玉玲, 司超群, 陈志宇, 初文磊, 陈在星, 王璜. 土壤硝酸盐氮的空间变异特征及影响因素分析[J]. 吉林大学学报(地球科学版), 2018, 48(1): 241-251. |
[12] | 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192. |
[13] | 施有志, 林树枝, 车爱兰, 惠祥宇, 冯少孔, 黄钰琳. 基于三维地震映像法的地铁盾构区间孤石勘探及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1885-1893. |
[14] | 刘娜, 梁刚, 董新维, 祁小丽, 杨悦锁, 叶康, 朴云仙. 酪氨酸酶固定化碳材料对苯酚的生物降解性能[J]. 吉林大学学报(地球科学版), 2017, 47(2): 573-579. |
[15] | 尹崧宇, 赵大军, 周宇, 赵博. 超声波振动下非均匀岩石损伤过程数值模拟与试验[J]. 吉林大学学报(地球科学版), 2017, 47(2): 526-533. |
|