吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (2): 526-533.doi: 10.13278/j.cnki.jjuese.201702201

• 地质工程与环境工程 • 上一篇    下一篇

超声波振动下非均匀岩石损伤过程数值模拟与试验

尹崧宇1, 赵大军1, 周宇1, 赵博2   

  1. 1. 吉林大学建设工程学院, 长春 130026;
    2. 吉林市松城建设工程质量检测中心, 吉林 吉林 132000
  • 收稿日期:2016-06-04 出版日期:2017-03-26 发布日期:2017-03-26
  • 通讯作者: 赵大军(1964),男,教授,博士生导师,主要从事地下钻采技术方面的研究,E-mail:1729333689@qq.com E-mail:1729333689@qq.com
  • 作者简介:尹崧宇(1989),男,博士研究生,主要从事地下钻采技术方面的研究,E-mail:15421072@qq.com
  • 基金资助:
    国家自然基金项目(41572356)

Numerical Simulation and Experiment of the Damage Process of Heterogeneous Rock Under Ultrasonic Vibration

Yin Songyu1, Zhao Dajun1, Zhou Yu1, Zhao Bo2   

  1. 1. College of Construction Engineering, Jilin University, Changchun 130026, China;
    2. Songcheng Construction Engineering Quality Testing Center of Jilin, Jilin 132000, Jilin, China
  • Received:2016-06-04 Online:2017-03-26 Published:2017-03-26
  • Supported by:
    Supported by the National Natural Science Foundation of China(41572356)

摘要: 在振动载荷作用下,岩石内部细观缺陷的发展将导致其宏观力学性能的劣化。为了提高超声波振动碎岩效率,采用数值模拟与实验研究相结合的方法,对超声波振动下岩石内部的损伤过程进行分析;采用有限元与统计技术相结合的方法,建立岩石二维模型,引入损伤增量因子的概念,分析岩石非均匀性对岩石裂纹扩展过程的影响。研究结果表明:1)岩石材料在超声波振动下的损伤过程分为萌生、扩展、贯通3个阶段,随着非均匀系数的增加,岩石原始裂纹的扩展效率逐渐加快。2)损伤因子存在一个临界值,约为0.005 4:当某一时刻岩石的损伤因子低于0.005 4时,损伤增量因子与非均匀系数的响应关系不明显;当损伤因子高于0.005 4时,损伤增量因子随着非均匀系数的增大而急剧增大,此时岩石非均匀性对损伤因子的影响不容忽视。

关键词: 非均匀性, 裂纹扩展, 损伤因子, 数值模拟, 超声波振动

Abstract: During dynamic loading process, the evolution of internal micro defects will lead to a remarkable degradation in macro mechanical properties of rock. To improve the efficiency of rock fragmentation, the internal damage process of rock under ultrasonic vibration was analyzed using numerical simulation method combined with experimental verification. A two-dimensional heterogeneous model of rock was established by means of finite element method and statistical techniques, and the concept of damage incremental factor was put forward. Based on established model, the influence of rock heterogeneity on crack propagation under ultrasonic vibration was analyzed. Results showed that the damage process of rock material under ultrasonic vibration could be divided into three stages, which were initiation, propagation and connection. With the increase in uniformity coefficient, the speed of original crack propagation in rock increased gradually. There was a critical value of damage factor which was 0.005 4 in this study. When the damage factor was less than the critical value, there was no obvious relationship between the damage incremental factor and homogeneity coefficients. Otherwise, the damage incremental factor increased sharply with the increased homogeneity coefficient of rock, when the effect of homogeneity coefficient on the damage factor could not be ignored.

Key words: heterogeneity, crack extension, damage factor, numerical simulation, ultrasonic vibration

中图分类号: 

  • P634.1
[1] Atalah A. Effect of Rock Trenching Vibrations on Ne-arby Structures[J]. Journal of Construction Engineering and Management, 2008, 134:234-241.
[2] Xu G Y, Yan C B. Numerical Simulation for Influence of Excavation and Blasting Vibration on Stability of Mined-Out Area[J]. Journal of Central South University of Technology, 2006, 13:577-583.
[3] Roussy R.The Development of Sonic Drilling Techno-logy[J]. Geodrilling International,2002,10:12-14.
[4] Oothoudt T. Sonic Drilling:An Environmental Impe-rative[J]. Geodrilling International,1998,2:14-16.
[5] Nikolic M Ibrahimbegovic A. Rock Mechanics Model Capable of Representing Initial Heterogeneities and Full Set of 3D Failure Mechanisms[J].Computer Methods in Applied Mechanics and Engineering, 2015,290:209-227.
[6] Zhong J H, Macro-Fracture Mode and Micro-Fracture Mechanism of Shale[J]. Petroleum Exploration and Development,2015, 42(2):269-276.
[7] Cho S H, Ogata Y, Kaneko K. Strain-Rate Depen-dency of the Dynamic Tensile Strength of Rock[J].International Journal of Rock Mechanics and Mining Sciences,2003,40(5):763-777.
[8] Whittles D N, Kingman S, Lowndes I, et al. Labo-ratory and Numerical Investigation into the Characteristics of Rock Fragmentation[J].Minerals Engineering,2006,19(14):1418-1429.
[9] Tay T E, Tan V B C, Deng M. Element-Failure Concepts for Dynamic Fracture and Delamination in Low-Velocity Impact of Composites[J].International Journal of Solids and Structures,2003,40(3):555-571.
[10] Armero F, Linder C. Numerical Simulation of Dyna-mic Fracture Using Finite Elements with Embedded Discontinuities[J].International Journal of Fracture,2009,160(2):119-141.
[11] 修立君, 邵明礼, 唐华风,等. 松辽盆地白垩系营城组火山岩孔缝单元类型和特征[J].吉林大学学报(地球科学版),2016,46(1):11-22. Xiu Lijun,Shao Mingli,Tang Huafeng,et al.Types and Characteristics of Volcanic Reservior Pore-Fracture Units of Cretaceous Yingcheng Formation in Songliao Basin[J]. Journal of Jilin University(Earth Science Edition),2016,46(1):11-22.
[12] 王冠民,熊周海, 张婕. 岩性差异对泥页岩可压裂性的影响分析[J]. 吉林大学学报(地球科学版),2016,46(4):1081-1089. Wang Guanmin,Xiong Zhouhai,Zhang Jie.The Impact of Lithology Differences to Shale Fracturing[J]. Journal of Jilin University(Earth Science Edition),2016,46(4):1081-1089.
[13] 杨蔚为,郑永来,邓树新.单元体弹性模量分布对岩石单轴抗压强度影响数值模拟[J].长江科学院院报,2014.,31(9):84-87. Yang Weiwei,Zheng Yonglai,Deng Shuxin.The Numerical Simulation for the Influence of the Distribution of Unit Elastic Modulus Against Rock Uniaxial Compressive[J]. Journal of Yangtze River Scientific Research Institute, 2014,31(9):84-87.
[14] 李志宏.爆生气体作用下岩石裂纹扩展机理与数值模拟[D].西安:西安理工大学,2006. Li Zhihong.Mechanism and Numerical Simulation of Rock's Crack Propagaion Under Detonation Gas[D]. Xi'an:Xi'an University of Technology,2006.
[15] Weibull W A. Statistical Theory of the Strength of Materials[C]//Proceedings of Royal Swedish Institute Engineering Researching. Stockholm:[s.n.]. 1939:1-50.
[16] 沃尔科夫C Д.强度统计理论[M].吴学蔺译.北京:科学出版社,1965. Bonkob С Д. Statistical Strength Theory[M].Translated by Wu Xuelin.Beijing:Science Press,1965.
[17] 唐春安. 岩石破裂过程中的灾变[M],北京:煤炭工业出版社,1993. Tang Chun'an.The Catastrophe in the Process of Rock Failure[M]. Beijing:Coal Industry Publishing House,1993.
[18] Hudson J A, Faihurst C. Tensile Strength Weibull's Theory and a General Statistical Approach to Rock Failure[C]//The Proceeding of Civil Engineering Materials Conference. Southampoton:Srtucture, Solid Mechnics and Engineering Design, 1969:901-904.
[19] Zhang C, Zhang Y J, Li Z W. Experimental Study of Seepage Characteristics of Single Rock Fracture Based on Stress States and Stress History[J].Global Geology,2016,19(3):1-5.
[20] 马春德.一维动静组合加载下岩石力学特性的试验研究[D].长沙:中南大学,2004. Ma Chunde. The Experimental Study of Mechanics Characteristics of Rock Subjected to One-Dimensional Coupled Static and Dynamic Loads[D]. Changsha:Central South University,2004.
[21] 刘慧. 基于CT图像处理的冻结岩石细观结构及损伤力学特性研究[D].西安:西安科技大学,2013. Liu Hui.Study on Meso-Structure and Damage Mechanical Characteristics of Frozen Rock Based on CT Image Processing[D]. Xi'an:Xi'an University of Science and Technology,2013.
[1] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[2] 阮大为, 李顺达, 毕亚强, 刘兴宇, 陈旭虎, 王兴源, 王可勇. 内蒙古阿尔哈达铅锌矿床构造控矿规律及深部成矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1705-1716.
[3] 谭家华, 雷宏武. 基于GMS的三维TOUGH2模型及模拟[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1229-1235.
[4] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[5] 孙建国. 高频渐近散射理论及其在地球物理场数值模拟与反演成像中的应用——研究历史与研究现状概述以及若干新进展[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1231-1259.
[6] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[7] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[8] 喻鹏, 马腾, 唐仲华, 周炜. 盆地异常低压系统处置油田污水可行性[J]. 吉林大学学报(地球科学版), 2016, 46(1): 211-219.
[9] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[10] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[11] 张剑波, 李谢清, 石阳, 朱建勃. 油藏数值模拟中地质模型的建模流程与方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 860-868.
[12] 束龙仓, 范建辉, 鲁程鹏, 张春艳, 唐然. 裂隙-管道介质泉流域水文地质模拟试验[J]. 吉林大学学报(地球科学版), 2015, 45(3): 908-917.
[13] 杨丽春, 庞宇斌, 李慎刚. 超长基坑开挖的空间效应[J]. 吉林大学学报(地球科学版), 2015, 45(2): 541-545.
[14] 雷宏武, 李佳琦, 许天福, 王福刚. 鄂尔多斯盆地深部咸水层二氧化碳地质储存热-水动力-力学(THM)耦合过程数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(2): 552-563.
[15] 杜超, 肖长来, 吕军, 田浩然. 地下水水质实时预报系统开发及应用:以下辽河平原为例[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1625-1632.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!