吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (5): 1589-1597.doi: 10.13278/j.cnki.jjuese.201605307

• 地球探测与信息技术 • 上一篇    

基于Hyperion数据的油砂分布遥感研究

尤金凤1,2, 邢立新1, 潘军1, 单玄龙3, 樊瑞雪1, 曹会4   

  1. 1. 吉林大学地球探测科学与技术学院, 长春 130026;
    2. 空军航空大学, 长春 130022;
    3. 吉林大学地球科学学院, 长春 130061;
    4. 中国人民武装警察部队黄金第一支队, 黑龙江 牡丹江 157021
  • 收稿日期:2016-01-13 出版日期:2016-09-26 发布日期:2016-09-26
  • 通讯作者: 邢立新(1954-),女,教授,博士生导师,主要从事遥感技术与应用研究,E-mail:xinglx@jlu.edu.cn E-mail:xinglx@jlu.edu.cn
  • 作者简介:尤金凤(1985),女,博士,主要从事遥感技术与应用研究,E-mail:aaayou3131@126.com
  • 基金资助:

    国家科技重大专项(2011ZX05028-002);中国石油天然气股份有限公司科学研究与技术开发项目(2013E-050102);中国地质调查局项目(1212010761502)

Application of Hyperion Hyperspectral Image for Studying on the Distribution of Oil Sands

You Jinfeng1,2, Xing Lixin1, Pan Jun1, Shan Xuanlong3, Fan Ruixue1, Cao Hui4   

  1. 1. College of GeoExploration Science and Technology, Jilin University, Changchun 130026, China;
    2. Aviation University of Air Force, Changchun 130022, China;
    3. College of Earth Sciences, Jilin University, Changchun 130061, China;
    4. No.1 Gold Geological Party of CAPF, Mudanjiang 157021, Heilongjiang, China
  • Received:2016-01-13 Online:2016-09-26 Published:2016-09-26
  • Supported by:

    Supported by the National Science and Technology Major Project of the Ministry of Science and Technology of China (2011ZX05028-002);Science and Technology Project of Petro China Company Limited (2013E-050102) and China Geological Survey Program (1212010761502)

摘要:

依据油砂中烃类的微渗漏和油砂组分光谱特征响应原理,利用Hyperion高光谱影像提取和识别与油砂分布相关的波谱信息,进行非常规油气能源——油砂分布的有利区预测。根据油砂所致烃类微渗漏的地表特征可知,低植被覆盖区的异常以矿物异常为主,中、高植被覆盖区的异常以植被异常为主。利用归一化植被指数表征地表植被的不同覆盖程度:当其值为[0.0,0.4)时,采用SAM(spectral angle method)提取矿物异常信息;当值为[0.4,0.7]和(0.7,1.0]时,分别采用LIC(lichenthaler index)和CTR(carter indices)方法提取植被异常信息。同时,为确保提取的矿物和植被异常信息的产生是由油砂中烃类的微渗漏所导致,以野外油砂反射光谱为端元,运用光谱角分类方法提取油砂信息,并将其与获取的矿物和植被异常信息进一步应用空间叠置分析确定油砂分布有利区。结果表明,综合运用野外实测高光谱数据和高光谱影像数据能够较准确地预测出研究区中油砂的分布位置。因此,应用高光谱影像进行油砂分布的有利区预测,可为未来利用遥感技术深入研究油砂可采储量评价提供参考依据。

关键词: 油砂, Hyperion影像数据, 烃类微渗漏, 含油率, 短波红外光谱

Abstract:

The research was mainly based on the principles of hydrocarbon microseepage and spectral response of oil sands composition characteristics. The spectral information related to oil sands distribution was extracted and identified from the hyperspectral image to predict the favorable reservoir for oil sands. Based on the analysis of ground characteristics of hydrocarbon microseepage caused by oil sands, the anomalous feature from low plantation coverage was primarily in mineralization anomaly, the main identification features of medium and high vegetation covering areas were vegetation anomalies. Normalized difference vegetation index (NDVI) was used to represent the different vegetation coverage degree. When NDVI is [0.0,0.4), SAM (spectral angle method) was used to extract mineralization anomaly information. When NDVI are [0.4,0.7] and (0.7,1.0], the vegetation anomaly information were taken by using LIC(lichenthaler index) and CTR(carter indices)respectively. Meanwhile, in order to ensure the extraction of mineralization and vegetation abnormal information caused by the leakage of hydrocarbons from oil sands, the spectral reflectance of oil sands was encouraged to be the endmember to get oil sands spatial information by using SAM. Finally, spatial superimposed analysis was applied to integrate oil sands composition spatial information with mineralization and vegetation exception information for delineating the prospective areas of oil sands distribution. The results showed that a combination of field measurement hyperspectral data and hyperspectral image could predict the distribution of oil sands reservoir. So hyperspectral image plays an important role in prediction of the oil sands bearing reservoir prospective areas, it could also provide some useful information for researching into recoverable reserves evaluation of oil sands by using remote sensing technology.

Key words: oil sands, hyperion image data, hydrocarbon microseepage, oil content, short wave infrared

中图分类号: 

  • P627

[1] 王向成,田庆久,管仲. 基于Hyperion影像的涩北气田油气信息提取[J]. 国土资源遥感,2007,19(1):36-40. Wang Xiangcheng,Tian Qingjiu,Guan Zhong. The Extraction of Oil and Gas Information by Using Hyperion Imagery in the Sebei Gas Field[J]. Remote Sensing for Land & Resources,2007,19(1):36-40.

[2] 沈渊婷,倪国强,徐大琦,等. 利用Hyperion短波红外高光谱数据勘探天然气的研究[J]. 红外与毫米波学报,2008,27(3):210-213. Shen Yuanting,Ni Guoqiang,Xu Daqi,et al. Study on Gas Exploration by Hyperion Hyperspectral Remote Sensing Data[J]. Journal of Infrared Millimeter Waves,2008,27(3):210-213.

[3] 单玄龙,车长波,李剑,等.国内外油砂资源研究现状[J].世界地质,2007,26(4):459-464. Shan Xuanlong,Che Changbo,Li Jian,et al. Present Status of Oil Sand Resources at Home and Abroad[J]. Global Geology,2007,26(4):459-464.

[4] 贾承造,刘希俭,雷群,等.油砂资源状况与储量评估方法[M].北京:石油工业出版社,2007. Jia Chengzao,Liu Xijian,Lei Qun,et al. Oil Sands Resources and Evaluation Methods of Reserves[M]. Beijing:Petroleum Industry Press,2007.

[5] 袁珍. 鄂尔多斯盆地东南部上三叠统油气储层特征及其主控因素研究[D]. 西安:西北大学,2011. Yuan Zhen. Study on the Characteristics and Control Factors Analysis of Oil & Gas Reservoir of the Upper Triassic in Southeast Ordos Basin[D]. Xi'an:Northwest University,2011.

[6] 白云来,赵应成,徐东,等. 陕西铜川-黄陵地区油页岩地质特征及利用前景[J].现代地质,2010,24(1):158-165. Bai Yunlai,Zhao Yingcheng,Xu Dong,et al. Geological Characteristics and Developing:Prospecting Prospects of Oil Shale in Tongchuan-Huangling District,Shaanxi Province[J]. Geoscience,2010,24(1):158-165.

[7] 闫和平.宜君县油页岩资源远景预测[J].陕西煤炭,2012,31(3):19-21. Yan Heping. Potential Prediction of Oil Shale Resources in Yijun County[J]. Shaanxi Coal,2012,31(3):19-21.

[8] 张静.鄂尔多斯盆地南部铜川组油页岩成因及资源潜力研究[D]. 西安:长安大学,2010. Zhang Jing. Genesis and Resource Potential Study of Oil Shale in Tongchuan Formation of Southern Part of Ordos Basin[D]. Xi'an:Chang'an University,2010.

[9] 刘文韬.耀县志[M].北京:中国社会出版社,1997. Liu Wentao. Yaozhou Zhi[M].Beijing:China Society Press,1997.

[10] 乔振民,邢立新,李淼淼,等. Hyperion数据玉米叶绿素含量制图[J]. 遥感技术与应用,2012,27(2):275-281. Qiao Zhenmin,Xing Lixin,Li Miaomiao,et al. Mapping of Chlorophyll Content with Hyperion Data[J]. Remote Sensing Technology and Application,2012,27(2):275-281.

[11] Van der Meer F,Van Dijk P,Van Der Werff H,et al. Remote Sensing and Petroleum Seepage:A Review and Case Study[J]. Terra Nova,2002,14(1):1-17.

[12] Noomen M F. Hyperspectral Reflectance of Vegetation Affected by Underground Hydrocarbon Gas Seepage[D]. Wageningen:Wageningen UR,2007.

[13] Lichtenthaler H K,Lang M,Sowinska M,et al. Detection of Vegetation Stress Via a New High Resolution Fluorescence Imaging System[J]. Journal of plant physiology,1996,148(5):599-612.

[14] Cloutis E A.Spectral Reflectance Properties of Hydro-carbons:Remote-Sensing Implications[J]. Science,1989,245:165-168.

[15] Cloutis E A,Gaffey M J,Moslow T F. Characterization of Minerals in Oil Sands by Reflectance Spectroscopy[J]. Fuel,1995,74(6):874-879.

[16] 马艳萍.鄂尔多斯盆地东北部油气逸散特征及其地质效应[D].西安:西北大学,2007. Ma Yanping. Characteristics of Hydrocarbon Leakage in Northeastern Ordos Basin and Its Geological Effect[D]. Xi'an:Northwest University,2007.

[17] Parry W T,Chan M A,Beitler B. Chemical Bleaching Indicates Episodes of Fluid Flow in Deformation Bands in Sandstone[J]. AAPG Bulletin,2004,88(2):175-191.

[18] Kirkland D W,Denison R E,Rooney M A. Diagenetic Alteration of Permian Strata at Oil Fields of South Central Oklahoma,USA[J]. Marine and Petroleum Geology,1995,12(6):629-644.

[19] Carter G A,Miller R L. Early Detection of Plant Stress by Digital Imaging Within Narrow Stress-Sensitive Wavebands[J].Remote Sensing of Environment,1994,50(3):295-302.

[20] 孟昭平.铜川焦坪矿区油气显示及成因探讨[J].西安矿业学院学报,1989(2):51-56. Meng Zhaoping. Research on the Display and Genesis of Oil-Gas in Tongchuan Jiaoping Mine Area[J].Journal of Xi'an Mining Institute,1989(2):51-56.

[1] 马锋, 张光亚, 王红军, 刘祚冬, 蒋凌志, 谢寅福, 李飞, 琚亮. 全球重油与油砂资源潜力、分布与勘探方向[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1042-1051.
[2] 郑玉龙, 陈春瑞, 王佰长, 王占国, 刘胜英, 吴相梅. 松辽盆地北部油页岩资源潜力评价[J]. 吉林大学学报(地球科学版), 2015, 45(3): 683-690.
[3] 谢尚克,杜佰伟,王剑,彭清华,郑博. 西藏伦坡拉盆地油页岩特征及分布规律[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1760-1767.
[4] 朱建伟, 赵刚, 刘博, 郭巍, 成俊. 油页岩测井识别技术及应用[J]. J4, 2012, 42(2): 289-295.
[5] 单玄龙, 罗洪浩, 孙晓猛, 张洋洋, 衣健. 四川盆地厚坝侏罗系大型油砂矿藏的成藏主控因素[J]. J4, 2010, 40(4): 897-904.
[6] 孙晓猛, 许强伟, 王英德, 田景雄, 王书琴, 杜继宇. 川西北龙门山冲断带北段油砂成藏特征及其主控因素[J]. J4, 2010, 40(4): 886-896.
[7] 李忠雄, 何江林, 熊兴国, 吴涛, 白培荣. 藏北羌塘盆地上侏罗-下白垩统胜利河油页岩特征及其形成环境[J]. J4, 2010, 40(2): 264-272.
[8] 邓虎成,周文,丘东洲,谢润成. 川西北天井山构造泥盆系油砂成矿条件与资源评价[J]. J4, 2008, 38(1): 69-0075.
[9] 贺君玲,邓守伟,陈文龙,贾裕鲲,高金琦. 利用测井技术评价松辽盆地南部油页岩[J]. J4, 2006, 36(6): 909-0914.
[10] 郭巍,李成博,宋玉勤,马祥县,刘春生. 民和盆地炭山岭油页岩特征及成矿控制因素分析[J]. J4, 2006, 36(6): 923-0927.
[11] 孟庆涛,刘招君,柳蓉,王永莉. 松辽盆地农安地区上白垩统油页岩含油率影响因素[J]. J4, 2006, 36(6): 963-0968.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!