吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1287-1303.doi: 10.13278/j.cnki.jjuese.20170115

• 地质与资源 •    下一篇

印度克拉通前寒武纪地质特征

罗彦军1, 马伯永2, 李尚林1, 张海迪1, 成功3   

  1. 1. 中国地质调查局西安地质调查中心, 西安 710054;
    2. 中国地质调查局, 北京 100037;
    3. 中南大学地球科学与信息物理学院, 长沙 410083
  • 收稿日期:2017-10-20 发布日期:2018-11-20
  • 作者简介:罗彦军(1985-),男,工程师,主要从事境外地质调查及矿产勘查工作,E-mail:11282186@qq.com
  • 基金资助:
    中国地质调查局地质调查项目(DD20160105,1212011120333)

Precambrian Geological Characteristics of India Craton

Luo Yanjun1, Ma Boyong2, Li Shanglin1, Zhang Haidi1, Cheng Gong3   

  1. 1. Xi'an Center of Geological Survey, CGS, Xi'an 710054, China;
    2. China Geological Survey, Beijing 100037, China;
    3. School of Geosciences and Info-Physics, Central South University, Changsha 410083, China
  • Received:2017-10-20 Published:2018-11-20
  • Supported by:
    Supported by Project of China Geological Survey (DD20160105, 1212011120333)

摘要: 印度克拉通位于喜马拉雅山前断裂以南,与欧亚大陆相连,是一独立的地质构造单元,主要由Aravalli微陆块、Bundelkhand微陆块、Singhbhum微陆块、Bastar微陆块、东Dharwar微陆块、西Dharwar微陆块及南部麻粒岩微陆块7个太古宙微陆块与Satpura活动带、东Ghats活动带2个元古宙活动带组成。在前期项目的基础上,通过梳理印度克拉通各个构造单元的地质特征,笔者认为:印度克拉通基底在2.50 Ga左右趋于稳定;其主要由TTG片麻岩、花岗岩及不同变质程度的变质岩系组成;元古宙发育的Vindhyan盆地、Chhattisgarh盆地、Cuddapah盆地、Godavari盆地、Indravati盆地及Bhima-Kaladgi盆地浅海相碎屑岩-碳酸盐岩沉积是组成印度克拉通前寒武纪的盖层。

关键词: 印度克拉通, 前寒武纪, 基底, 盖层

Abstract: The India craton is a separate geotectonic unit, which is located in the south of the Himalayas piedmont fault and presently connected with the Eurasian continent. It is mainly composed of seven Archean micro-continents, including Aravalli, Bundelkhand, Singhbhum, Bastar, Eastern Dharwar, Western Dharwar and the southern granulite, and two Proterozoic mobile belts, Satpura and Eastern Ghats. In this paper we summarize the geological characteristics of the main tectonic units of the India craton based on the latest project research results. The stable configuration of the India craton was largely completed at 2.50 Ga. The India craton metamorphic crystalline basement is mainly composed of TTG gneiss, granite, and metamorphic series. The cover of the India craton is mainly composed of the shallow marine clastic sedimentary rocks and platform carbonate rocks, depositing in the Proterozoic sedimentary basins, such as the Vindhyan, Chhattisgarh, Cuddapah, Godavari, Indravati, and Bhima-Kaladgi basins.

Key words: India craton, Precambrian, basement, sedimentary cover

中图分类号: 

  • P56
[1] Mei Hualin. A Visit to the Singhbhum Craton, India and Comparison with North China Craton, China[J]. Gondwana Research (Gondwana Newsletter Section),1999, 2:288-290.
[2] 成功,孙卫宾,李尚林,等. 印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析[J]. 西北地质,2016,49(4):136-145. Cheng Gong, Sun Weibin, Li Shanglin, et al. Geological Characters and Genesis Analysis of Greenstone-Type BIF Iron Deposits in Dharwar Craton, India[J]. Northwestern Geology, 2016,49(4):136-145.
[3] 李尚林, 罗彦军, 马中平, 等. 印度铁矿资源与巴勒迪拉(Bailadila)铁矿地质特征[J]. 吉林大学学报(地球科学版), 2015, 45(增刊1):1155. Li Shanglin, Luo Yanjun, Ma Zhongping, et al. The Geological Characters of Bailadila Iron Deposits and Iron Deposits in India[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Sup.1):1155.
[4] Rogers J J W. Dharwar Craton and the Assembly of Peninsular India[J]. Jour Geol, 1986, 94:129-143.
[5] Radhakrishna B P, Ramakrishnan M. Archean-Proterozoic Boundary in India[J]. Jour Geol, 1988, 32:263-278.
[6] Friend C R L, Nutman A P,Mcgregor V R. Later Archeanterrane Accretion in the Gobthaad Region, Southern West Greenland[J]. Nature, 1988, 355:535-538.
[7] Joseph G M, Manoj K P. Precambrian Crustal Evolution of Peninsular India:A 3.0 Billion Year Odyssey[J]. Journal of Asian Earth Sciences, 2010, 39:483-515.
[8] Ramakrishnan M, Vaidyanadhan R. Geology of India[M]. Bangalore:Geological Society of India, 2008:1-994.
[9] Vimal R P, Joseph G M. India's Changing Place in Global Proterozoic Reconstructions:A Review of Geochronologic Constraints and Paleomagnetic Poles from the Dharwar, Bundelkhand and Marwar Cratons[J]. Journal of Geodynamics, 2010, 50:224-242.
[10] Roy A B, Kröner A, Bhattacharya P K, et al. Meta-morphic Evolutionand Zircon Geochronology of Early Proterozoic Granulites in the Aravalli Mountains of Northwestern India[J]. Geological Magazine, 2005, 142:287-302.
[11] Parampreet K, Armin Z, Naveen C, et al. Archaean to Palaeoproterozoic Crustal Evolution of the Aravalli Mountain Range, NW India, and Its Hinterland:The U-Pb and Hf Isotope Record of Detrital Zircon[J]. Precambrian Research, 2011, 187:155-164.
[12] Parampreet K, Armin Z, Naveen C. Palaeoprotero-zoic Continental Arc Magmatism, and Neoproterozoic Metamorphism in the Aravalli-Delhi Orogenic Belt, NW India:New Constraints from in Situ Zircon U-Pb-Hf Isotope Systematics, Monazite Dating and Whole-Rock Geochemistry[J]. Journal of Asian Earth Sciences, 2017, 136:68-88.
[13] Kumar S, Pandey S K. Discovery of Trilobite Trace Fossils from the Nagaur Sandstone, the Marwar Supergroup, Dulmera Area, Bikaner District, Rajasthan[J].Current Science, 2008,94:1081-1085.
[14] Pandit M K, Sial A N, Jamrani S S, et al. Carbon-Isotopic Profilesacross the Bilara Group Rocks of Trans-Aravalli Marwar Supergroup in Western India:Implications for Neoproterozoic-Cambrian Transition[J]. Gondwana Research, 2001, 4:387-394.
[15] Sanjeet K V, Surendra P V, Elson P O, et al. LA-SF-ICP-MS Zircon U-Pb Geochronology of Granitic Rocks from the Central Bundelkhand Greenstone Complex, Bundelkhand Craton, India Research Article[J]. Journal of Asian Earth Sciences, 2016, 118:125-137.
[16] Basu A. Ediacaran Fossils in Meso-and Paleoprote-rozoic Rocks in Peninsular India Extend Darwin[J]. Journal of the Geological Society of India, 2007, 73:528-536.
[17] Mondal M E A, Goswami J N, Deomurari M P, et al. Ion Microprobe 207Pb/206Pb Ages of Zircons from the Bundelkhand Massif, Northern India:Implications for Crustal Evolution of the Bundelkhand-Aravalli Supercontinent[J]. Precambrian Research, 2002, 117:85-100.
[18] Davis W J, Bleeker W. Timing of Plutonism Defor-mation and Metamorphism in the Yellow Knife Domain, Slave Province, Canada Can[J]. Jour Earth Sci, 1999, 36:1169-1187.
[19] Vimal R P, Joseph G M, Manoj K P, et al. Paleo-magnetic and Geochronological Studies of the Mafic Dyke Swarms of Bundelkhand Craton, Central India:Implications for the Tectonic Evolution and Paleogeographic Reconstructions[J]. Precambrian Research, 2012, 198/199:57-76.
[20] Rav J S. Age of Vindhyan Supergroup:A Review of Recent Findings[J]. Jour Earth System Sci, 2006, 115:149-160.
[21] Chaudhari A K, Mukhopadhyay J, Patranabis-Deb S, et al. The Neoproterozoic Cratonic Successions of Peninsular India[J]. Gondwana Research, 1999,2:213-225.
[22] Raza M, Khan A, Shamim K M. Origin of Late Palaeoproterozoic Grea Vindhyan Basin of North Indian Shield:Geochemical Evidence from Mafic Volcanic Rocks[J]. Journal of Asian Earth Sciences, 2009,34:716-730.
[23] Sisir K M, Edward M R,Li Chusi, et al, The Gene-sis of Archaean Chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India[J]. Precambrian Research, 2006, 148:45-66.
[24] Misra S, Deomurari M P, Wiedenbeck M, et al. 207Pb/206Pb Zircon Ages and the Evolution of the Singhbhum Craton, Eastern India:An Ion Microprobe Study[J]. Precambrian Research, 1999, 93:139-151.
[25] Sukanta D, Abhishek T, Liu Yongsheng, et al. Generation and Evolution of Palaeoarchaean Continental Crust in the Central Part of the Singhbhum Craton, Eastern India[J]. Precambrian Research, 2017, 298:268-298.
[26] Eriksson P G, Mazumder R, Catuneanu, et al. Precambrian Continental Freeboard and Geological Evolution:A Time Perspective[J]. Earth-Science Reviews, 2006, 79:165-204.
[27] Ghosh J G. 3.56 Gatonalite in the Central Part of the Bastar Craton, India:Oldest Indian Date[J]. Journal of Asian Earth Sciences, 2004, 23:359-364.
[28] Hussain M F, Mondal M E A, Ahmad T. Petrological and Geochemical Characteristics of Archean Gneisses and Granitoids from Bastar Craton, Central India:Implication for Subduction Related Magmatism[J]. Gondwana Research, 2004, 7:531-537.
[29] Rajesh K S, Gulab C Ga. Geochemistry and Petro-genesis of Paleo-Mesoproterozoicmafic Dyke Swarms from Northern Bastar Craton, Central India:Geodynamic Implications in Reference to Columbia Supercontinent[J]. Gondwana Research, 2015, 28:1061-1078.
[30] Neogi S, Miura H, Hariya Y. Geochemistry of the Dongargarh Volcanicrocks, Central India:Implications for the Precambrian Mantle[J]. Precambrian Research, 1996, 76:77-91.
[31] Bandyopadhyay B K, Roy A, Huin A K. Structure and Tectonics of a Part of the Central Indian Shield[J]. Geological Society of India Memoir, 1990, 31:433-467.
[32] Patranabis-Deb S, Bickford M E, Hill B, et al. SHRIMP Ages of Zircon in the Uppermost Tuff in Chattisgarh Basin in Central India Requireup to 500 Ma Adjustments in Indian Proterozoic Stratigraphy[J]. Journal of Geology, 2007,115:407-416.
[33] Maheshwari A, Sial A N, Guhey R,et al. C-Isotope Composition of Carbonates from the Indravati Basin, India:Implications for Regional Stratigraphic Correlation[J]. Gondwana Research, 2005, 8:603-610.
[34] Balakrishnan S, Hanson G N, Rajamani V. U-Pb Ages for Zircon Andtitanite from the Ramagiri Area, Southern India:Evidence for Accretionary Originof the Eastern Dharwar Craton During the Late Archean[J]. Journal of Geology, 1999,107:69-86.
[35] Friend C R L, Nutman A P. SHRIMP U-Pb Geochronology of the Closepet Granite and Peninsular Gneiss, Karnataka, South India[J]. Journal of the Geological Society of India, 1991, 38:357-368.
[36] Dilip S, Sarbani P D. Proterozoic Evolution of Eas-tern Dharwar and Bastar Cratons, India:An Overview of the Intracratonic Basins, Craton Margins and Mobile Belts[J]. Journal of Asian Earth Sciences, 2014, 93:230-251.
[37] Chadwick B, Vasudev V N, Hegde G V. The Dharwarcraton,Southern India, Interpreted as the Result of Late Archaean Oblique Convergence[J]. Precambrian Research, 2000, 99:91-111.
[38] Chatterjee N, Bhattacharji S. Petrology, Geoche-mistry and Tectonic Settings of the Mafic Dykes and Sills Associated with the Evolution of the Proterozoic Cuddapah Basin of South India[J]. Proceedings of the Indian Academy of Sciences (Earth Planetary Science), 2001, 110:433-453.
[39] Chaudhuri A K. Stratigraphy and Paleogeography of the Godavari Supergroup in the South-Central Pranhita-Godavari Valley, South India[J]. Journal of Asian Earth Sciences, 2003, 21:595-611.
[40] Naha K, Srinivasan R, Jayaram S. Sedimentological Structural Andmigmatitic History of the Archaean Dharwar Tectonic Province, SouthernIndia[J]. Proceedings of the Indian Academy of Science (Earth Planetary Science), 1991, 100:413-433.
[41] Élodie M, Pascal P, Claire R B, et al. Primary Sulfur Isotope Signatures Preserved in High-Grade Archean Barite Deposits of the Sargur Group, Dharwar Craton, India[J]. Precambrian Research, 2017, 295:38-47.
[42] Radhakrishna T, Mathew J. Proterozoic Palaeomag-matism of the South Indian Shield and Tectonic Constraints[J]. Memoirs of the Geological Society Ofindia, 1993, 26:321-336.
[43] Dey S, Rai A K, Chaki A. Palaeo-Weathering, Composition and Tectonics of Provenance of the Proterozoic Intra-Cratonic Kaladgi-Badami Basin, Karnataka,Southern India:Evidence from Sandstone Petrography and Geochemistry[J]. Journal of Asian Earth Sciences, 2009,34:703-715.
[44] Clark C, Collins A S, Timms N E, et al. SHRIMP U-Pb Age Constraints on Magmatism and High-Grade Metamorphism in the Salem Block, Southern India[J]. Gondwana Research, 2009,16:27-36.
[45] Raith M M, Srikantappa C, Buhl D, et al. The Nilgirienderbites, SouthIndia; Nature and Age Constraints on Protolith Formation, High-Grade Metamorphism and Cooling History[J]. Precambrian Research, 1999, 98:129-150.
[46] Braun I, Cenki-Tok B, Paquette J L, et al. Petrology and U-Th-Pb Geochronology of the Sapphirine-Quartz-Bearing Metapelites from Rajapalayam, Madurai Block, Southern India:Evidence for Polyphase Neoproterozoic High-Grade Metamorphism[J]. Chemical Geology, 2007, 241:129-147.
[47] Santosh M, Collins A S, Tamashiro I, et al. The Timing of Ultrahigh-Temperature Metamorphism in Southern India:U-Th-Pb Electron Microprobe Ages from Zircon and Monazite in Sapphirine-Bearing Granulites[J]. Gondwana Research, 2006, 10:128-155.
[48] Acharyya S K, Roy A. Tectono-Thermal History of the Central India Tectonic Zone and Reactivation of Faults/Shears[J]. Jour Soc Geol Surv India, 2000, 55:239-256.
[49] Roy A, Hanuma P M, Devarajan M K. Ductile Shearing and Synkinematic Granite Emplacement Along the Southern Margin of Mahakoshal Supracrustal Belt:Evidence from Singrauli ARea, Madhya Pradesh[J]. Jour Soc India, 2002, 59:9-21.
[50] Radhakrishna B P. Suspect Tectono-Stratigraphic Terrane Elements in the Indian Subcontinent[J]. Journal of the Geological Society of India, 1989, 34:1-24.
[51] Stein H J, Hannah J L, Zimmerman A, et al. A 2.5 Ga Porphyry Cu-Mo-Au Deposit at Malanjkhand, Central India:Implications for Late Archean Continental Assembly[J]. Precambrian Research, 2004, 134:189-226.
[52] Biswal T K, De Waele Bert, Ahuja H. Timing and Dynamics of the Juxtaposition of the Eastern Ghats Mobile Belt Against the Bhandara Craton,India:A Structural and Zircon U-Pb SHRIMP Study of the Fold-Thrust Belt and Associated Nepheline Syenite Plutons[J]. Tectonics, 2007,26:1-21.
[53] Ramakrishnan M, Nanda J K, Augustine P F. Geo-logical Evolution of the Proterozoic Eastern Ghats Mobile Belt[J]. Geological Survey of India Special Publication, 1998,44:1-21.
[54] Nanda J K, Pati U C. Field Relations and Petro-chemistry of the Granulites and Associated Rocks in the Ganjam-Koraput Sector of the Eastern Ghats Belts[J]. Indian Minerals, 1989,43:247-264.
[55] 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质,2010,29(1):24-36. Zhai Minguo. Tectonic Evolution and Metallogenesis of North China Craton[J]. Mineral Deposits, 2010, 29(1):24-36.
[56] 张晗,孙丰月. 中条山同善地区虎坪杂岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 吉林大学学报(地球科学版),2012, 42(3):733-746. Zhan Han, Sun Fengyue. U-Pb Geochronology and Hf Isotope Geochemistry of the Zircon from Huping Complex in Tongshan Area of Zhongtiaoshan Mountains and Its Geologic Implications[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(3):733-746.
[57] 郑培玺, 金巍, 周燕,等. 辽西地区台子里花岗质片麻岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版),2009,39(3):455-460. Zheng Peixi, Jin Wei, Zhou Yan, et al. Zircon U-Pb Age and Geological Significance of the Taizili Granitic Gneiss from Western Liaoning Province[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(3):455-460.
[58] 席怡,何登发,孙衍鹏,等.克拉通演化的超大陆背景与克拉通盆地的成因制约[J],地质科学,2014, 49(4):1093-1112. Xi Yi, He Dengfa, Sun Yanpeng, et al. Supercontinent Background of the Evolution of Cratons and the Genetic Mechanism of the Cratonic Basins[J]. Chinese Journal of Geology, 2014, 49(4):1093-1112.
[59] Santanu K B, Simon A W, Anubha B, et al. Growth of the Greater Indian Landmass and Its Assembly in Rodinia:Geochronological Evidence from the Central Indian Tectonic Zone[J]. Gondwana Research, 2012, 22:54-72.
[1] 张聪, 石砥石, 张子亚, 陈科, 苑坤, 乔计花, 彭芳苹. 云南楚雄盆地西部高精度重磁电特征及基底特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 863-871.
[2] 展铭望, 付广, 仇翠莹, 杨在增. 一种新的断裂破坏泥岩盖层程度的综合研究方法[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1687-1694.
[3] 王伟, 付广, 胡欣蕾. 断裂对盖层封气综合能力破坏程度的研究方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(3): 685-693.
[4] 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537.
[5] 周建波, 石爱国, 景妍. 东北地块群:构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1042-1055.
[6] 吕延防, 韦丹宁, 孙永河, 胡明, 刘哲, 孙同文, 王海学, 许辰璐. 南堡凹陷断层对中、上部含油组合油气成藏的控制作用[J]. 吉林大学学报(地球科学版), 2015, 45(4): 971-982.
[7] 刘财, 杨宝俊, 鹿琪, 冯晅, 刘洋, 王典. 黑龙江板块构造地球物理研究基本进展[J]. J4, 2012, 42(5): 1497-1505.
[8] 王微, 王世称, 刘光胜, 马生忠. 运用综合信息开展地震区划[J]. J4, 2011, 41(3): 892-899.
[9] 嵇艳鞠, 栾卉, 李肃义, 万玲, 王远, 许洋铖, 李丽, 林君. 全波形时间域航空电磁探测分辨率[J]. J4, 2011, 41(3): 885-891.
[10] 付广, 臧凤智. 徐深大气田形成的有利地质条件[J]. J4, 2011, 41(1): 12-20.
[11] 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247.
[12] 高福红, 王枫, 曹花花, 郑宇航, 刘军. 三江盆地绥滨断陷基底花岗岩的锆石U-Pb年代学及其构造意义[J]. J4, 2010, 40(4): 955-960.
[13] 付晓飞, 沙威, 王磊, 刘晓波. 松辽盆地幔源成因CO2气藏分布规律及控制因素[J]. J4, 2010, 40(2): 253-263.
[14] 付广, 胡明, 于丹. 火山岩盖层类型及封气能力--以松辽盆地徐家围子断陷为例[J]. J4, 2010, 40(2): 237-244.
[15] 于丹, 付晓飞, 吕延防, 付广, 胡明. 徐家围子断陷深层天然气盖层特征及封盖性评价[J]. J4, 2009, 39(5): 773-780.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!