吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1287-1303.doi: 10.13278/j.cnki.jjuese.20170115
• 地质与资源 • 下一篇
罗彦军1, 马伯永2, 李尚林1, 张海迪1, 成功3
Luo Yanjun1, Ma Boyong2, Li Shanglin1, Zhang Haidi1, Cheng Gong3
摘要: 印度克拉通位于喜马拉雅山前断裂以南,与欧亚大陆相连,是一独立的地质构造单元,主要由Aravalli微陆块、Bundelkhand微陆块、Singhbhum微陆块、Bastar微陆块、东Dharwar微陆块、西Dharwar微陆块及南部麻粒岩微陆块7个太古宙微陆块与Satpura活动带、东Ghats活动带2个元古宙活动带组成。在前期项目的基础上,通过梳理印度克拉通各个构造单元的地质特征,笔者认为:印度克拉通基底在2.50 Ga左右趋于稳定;其主要由TTG片麻岩、花岗岩及不同变质程度的变质岩系组成;元古宙发育的Vindhyan盆地、Chhattisgarh盆地、Cuddapah盆地、Godavari盆地、Indravati盆地及Bhima-Kaladgi盆地浅海相碎屑岩-碳酸盐岩沉积是组成印度克拉通前寒武纪的盖层。
中图分类号:
[1] Mei Hualin. A Visit to the Singhbhum Craton, India and Comparison with North China Craton, China[J]. Gondwana Research (Gondwana Newsletter Section),1999, 2:288-290. [2] 成功,孙卫宾,李尚林,等. 印度达尔瓦尔克拉通绿岩带BIF型铁矿地质特征及成因分析[J]. 西北地质,2016,49(4):136-145. Cheng Gong, Sun Weibin, Li Shanglin, et al. Geological Characters and Genesis Analysis of Greenstone-Type BIF Iron Deposits in Dharwar Craton, India[J]. Northwestern Geology, 2016,49(4):136-145. [3] 李尚林, 罗彦军, 马中平, 等. 印度铁矿资源与巴勒迪拉(Bailadila)铁矿地质特征[J]. 吉林大学学报(地球科学版), 2015, 45(增刊1):1155. Li Shanglin, Luo Yanjun, Ma Zhongping, et al. The Geological Characters of Bailadila Iron Deposits and Iron Deposits in India[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(Sup.1):1155. [4] Rogers J J W. Dharwar Craton and the Assembly of Peninsular India[J]. Jour Geol, 1986, 94:129-143. [5] Radhakrishna B P, Ramakrishnan M. Archean-Proterozoic Boundary in India[J]. Jour Geol, 1988, 32:263-278. [6] Friend C R L, Nutman A P,Mcgregor V R. Later Archeanterrane Accretion in the Gobthaad Region, Southern West Greenland[J]. Nature, 1988, 355:535-538. [7] Joseph G M, Manoj K P. Precambrian Crustal Evolution of Peninsular India:A 3.0 Billion Year Odyssey[J]. Journal of Asian Earth Sciences, 2010, 39:483-515. [8] Ramakrishnan M, Vaidyanadhan R. Geology of India[M]. Bangalore:Geological Society of India, 2008:1-994. [9] Vimal R P, Joseph G M. India's Changing Place in Global Proterozoic Reconstructions:A Review of Geochronologic Constraints and Paleomagnetic Poles from the Dharwar, Bundelkhand and Marwar Cratons[J]. Journal of Geodynamics, 2010, 50:224-242. [10] Roy A B, Kröner A, Bhattacharya P K, et al. Meta-morphic Evolutionand Zircon Geochronology of Early Proterozoic Granulites in the Aravalli Mountains of Northwestern India[J]. Geological Magazine, 2005, 142:287-302. [11] Parampreet K, Armin Z, Naveen C, et al. Archaean to Palaeoproterozoic Crustal Evolution of the Aravalli Mountain Range, NW India, and Its Hinterland:The U-Pb and Hf Isotope Record of Detrital Zircon[J]. Precambrian Research, 2011, 187:155-164. [12] Parampreet K, Armin Z, Naveen C. Palaeoprotero-zoic Continental Arc Magmatism, and Neoproterozoic Metamorphism in the Aravalli-Delhi Orogenic Belt, NW India:New Constraints from in Situ Zircon U-Pb-Hf Isotope Systematics, Monazite Dating and Whole-Rock Geochemistry[J]. Journal of Asian Earth Sciences, 2017, 136:68-88. [13] Kumar S, Pandey S K. Discovery of Trilobite Trace Fossils from the Nagaur Sandstone, the Marwar Supergroup, Dulmera Area, Bikaner District, Rajasthan[J].Current Science, 2008,94:1081-1085. [14] Pandit M K, Sial A N, Jamrani S S, et al. Carbon-Isotopic Profilesacross the Bilara Group Rocks of Trans-Aravalli Marwar Supergroup in Western India:Implications for Neoproterozoic-Cambrian Transition[J]. Gondwana Research, 2001, 4:387-394. [15] Sanjeet K V, Surendra P V, Elson P O, et al. LA-SF-ICP-MS Zircon U-Pb Geochronology of Granitic Rocks from the Central Bundelkhand Greenstone Complex, Bundelkhand Craton, India Research Article[J]. Journal of Asian Earth Sciences, 2016, 118:125-137. [16] Basu A. Ediacaran Fossils in Meso-and Paleoprote-rozoic Rocks in Peninsular India Extend Darwin[J]. Journal of the Geological Society of India, 2007, 73:528-536. [17] Mondal M E A, Goswami J N, Deomurari M P, et al. Ion Microprobe 207Pb/206Pb Ages of Zircons from the Bundelkhand Massif, Northern India:Implications for Crustal Evolution of the Bundelkhand-Aravalli Supercontinent[J]. Precambrian Research, 2002, 117:85-100. [18] Davis W J, Bleeker W. Timing of Plutonism Defor-mation and Metamorphism in the Yellow Knife Domain, Slave Province, Canada Can[J]. Jour Earth Sci, 1999, 36:1169-1187. [19] Vimal R P, Joseph G M, Manoj K P, et al. Paleo-magnetic and Geochronological Studies of the Mafic Dyke Swarms of Bundelkhand Craton, Central India:Implications for the Tectonic Evolution and Paleogeographic Reconstructions[J]. Precambrian Research, 2012, 198/199:57-76. [20] Rav J S. Age of Vindhyan Supergroup:A Review of Recent Findings[J]. Jour Earth System Sci, 2006, 115:149-160. [21] Chaudhari A K, Mukhopadhyay J, Patranabis-Deb S, et al. The Neoproterozoic Cratonic Successions of Peninsular India[J]. Gondwana Research, 1999,2:213-225. [22] Raza M, Khan A, Shamim K M. Origin of Late Palaeoproterozoic Grea Vindhyan Basin of North Indian Shield:Geochemical Evidence from Mafic Volcanic Rocks[J]. Journal of Asian Earth Sciences, 2009,34:716-730. [23] Sisir K M, Edward M R,Li Chusi, et al, The Gene-sis of Archaean Chromitites from the Nuasahi and Sukinda Massifs in the Singhbhum Craton, India[J]. Precambrian Research, 2006, 148:45-66. [24] Misra S, Deomurari M P, Wiedenbeck M, et al. 207Pb/206Pb Zircon Ages and the Evolution of the Singhbhum Craton, Eastern India:An Ion Microprobe Study[J]. Precambrian Research, 1999, 93:139-151. [25] Sukanta D, Abhishek T, Liu Yongsheng, et al. Generation and Evolution of Palaeoarchaean Continental Crust in the Central Part of the Singhbhum Craton, Eastern India[J]. Precambrian Research, 2017, 298:268-298. [26] Eriksson P G, Mazumder R, Catuneanu, et al. Precambrian Continental Freeboard and Geological Evolution:A Time Perspective[J]. Earth-Science Reviews, 2006, 79:165-204. [27] Ghosh J G. 3.56 Gatonalite in the Central Part of the Bastar Craton, India:Oldest Indian Date[J]. Journal of Asian Earth Sciences, 2004, 23:359-364. [28] Hussain M F, Mondal M E A, Ahmad T. Petrological and Geochemical Characteristics of Archean Gneisses and Granitoids from Bastar Craton, Central India:Implication for Subduction Related Magmatism[J]. Gondwana Research, 2004, 7:531-537. [29] Rajesh K S, Gulab C Ga. Geochemistry and Petro-genesis of Paleo-Mesoproterozoicmafic Dyke Swarms from Northern Bastar Craton, Central India:Geodynamic Implications in Reference to Columbia Supercontinent[J]. Gondwana Research, 2015, 28:1061-1078. [30] Neogi S, Miura H, Hariya Y. Geochemistry of the Dongargarh Volcanicrocks, Central India:Implications for the Precambrian Mantle[J]. Precambrian Research, 1996, 76:77-91. [31] Bandyopadhyay B K, Roy A, Huin A K. Structure and Tectonics of a Part of the Central Indian Shield[J]. Geological Society of India Memoir, 1990, 31:433-467. [32] Patranabis-Deb S, Bickford M E, Hill B, et al. SHRIMP Ages of Zircon in the Uppermost Tuff in Chattisgarh Basin in Central India Requireup to 500 Ma Adjustments in Indian Proterozoic Stratigraphy[J]. Journal of Geology, 2007,115:407-416. [33] Maheshwari A, Sial A N, Guhey R,et al. C-Isotope Composition of Carbonates from the Indravati Basin, India:Implications for Regional Stratigraphic Correlation[J]. Gondwana Research, 2005, 8:603-610. [34] Balakrishnan S, Hanson G N, Rajamani V. U-Pb Ages for Zircon Andtitanite from the Ramagiri Area, Southern India:Evidence for Accretionary Originof the Eastern Dharwar Craton During the Late Archean[J]. Journal of Geology, 1999,107:69-86. [35] Friend C R L, Nutman A P. SHRIMP U-Pb Geochronology of the Closepet Granite and Peninsular Gneiss, Karnataka, South India[J]. Journal of the Geological Society of India, 1991, 38:357-368. [36] Dilip S, Sarbani P D. Proterozoic Evolution of Eas-tern Dharwar and Bastar Cratons, India:An Overview of the Intracratonic Basins, Craton Margins and Mobile Belts[J]. Journal of Asian Earth Sciences, 2014, 93:230-251. [37] Chadwick B, Vasudev V N, Hegde G V. The Dharwarcraton,Southern India, Interpreted as the Result of Late Archaean Oblique Convergence[J]. Precambrian Research, 2000, 99:91-111. [38] Chatterjee N, Bhattacharji S. Petrology, Geoche-mistry and Tectonic Settings of the Mafic Dykes and Sills Associated with the Evolution of the Proterozoic Cuddapah Basin of South India[J]. Proceedings of the Indian Academy of Sciences (Earth Planetary Science), 2001, 110:433-453. [39] Chaudhuri A K. Stratigraphy and Paleogeography of the Godavari Supergroup in the South-Central Pranhita-Godavari Valley, South India[J]. Journal of Asian Earth Sciences, 2003, 21:595-611. [40] Naha K, Srinivasan R, Jayaram S. Sedimentological Structural Andmigmatitic History of the Archaean Dharwar Tectonic Province, SouthernIndia[J]. Proceedings of the Indian Academy of Science (Earth Planetary Science), 1991, 100:413-433. [41] Élodie M, Pascal P, Claire R B, et al. Primary Sulfur Isotope Signatures Preserved in High-Grade Archean Barite Deposits of the Sargur Group, Dharwar Craton, India[J]. Precambrian Research, 2017, 295:38-47. [42] Radhakrishna T, Mathew J. Proterozoic Palaeomag-matism of the South Indian Shield and Tectonic Constraints[J]. Memoirs of the Geological Society Ofindia, 1993, 26:321-336. [43] Dey S, Rai A K, Chaki A. Palaeo-Weathering, Composition and Tectonics of Provenance of the Proterozoic Intra-Cratonic Kaladgi-Badami Basin, Karnataka,Southern India:Evidence from Sandstone Petrography and Geochemistry[J]. Journal of Asian Earth Sciences, 2009,34:703-715. [44] Clark C, Collins A S, Timms N E, et al. SHRIMP U-Pb Age Constraints on Magmatism and High-Grade Metamorphism in the Salem Block, Southern India[J]. Gondwana Research, 2009,16:27-36. [45] Raith M M, Srikantappa C, Buhl D, et al. The Nilgirienderbites, SouthIndia; Nature and Age Constraints on Protolith Formation, High-Grade Metamorphism and Cooling History[J]. Precambrian Research, 1999, 98:129-150. [46] Braun I, Cenki-Tok B, Paquette J L, et al. Petrology and U-Th-Pb Geochronology of the Sapphirine-Quartz-Bearing Metapelites from Rajapalayam, Madurai Block, Southern India:Evidence for Polyphase Neoproterozoic High-Grade Metamorphism[J]. Chemical Geology, 2007, 241:129-147. [47] Santosh M, Collins A S, Tamashiro I, et al. The Timing of Ultrahigh-Temperature Metamorphism in Southern India:U-Th-Pb Electron Microprobe Ages from Zircon and Monazite in Sapphirine-Bearing Granulites[J]. Gondwana Research, 2006, 10:128-155. [48] Acharyya S K, Roy A. Tectono-Thermal History of the Central India Tectonic Zone and Reactivation of Faults/Shears[J]. Jour Soc Geol Surv India, 2000, 55:239-256. [49] Roy A, Hanuma P M, Devarajan M K. Ductile Shearing and Synkinematic Granite Emplacement Along the Southern Margin of Mahakoshal Supracrustal Belt:Evidence from Singrauli ARea, Madhya Pradesh[J]. Jour Soc India, 2002, 59:9-21. [50] Radhakrishna B P. Suspect Tectono-Stratigraphic Terrane Elements in the Indian Subcontinent[J]. Journal of the Geological Society of India, 1989, 34:1-24. [51] Stein H J, Hannah J L, Zimmerman A, et al. A 2.5 Ga Porphyry Cu-Mo-Au Deposit at Malanjkhand, Central India:Implications for Late Archean Continental Assembly[J]. Precambrian Research, 2004, 134:189-226. [52] Biswal T K, De Waele Bert, Ahuja H. Timing and Dynamics of the Juxtaposition of the Eastern Ghats Mobile Belt Against the Bhandara Craton,India:A Structural and Zircon U-Pb SHRIMP Study of the Fold-Thrust Belt and Associated Nepheline Syenite Plutons[J]. Tectonics, 2007,26:1-21. [53] Ramakrishnan M, Nanda J K, Augustine P F. Geo-logical Evolution of the Proterozoic Eastern Ghats Mobile Belt[J]. Geological Survey of India Special Publication, 1998,44:1-21. [54] Nanda J K, Pati U C. Field Relations and Petro-chemistry of the Granulites and Associated Rocks in the Ganjam-Koraput Sector of the Eastern Ghats Belts[J]. Indian Minerals, 1989,43:247-264. [55] 翟明国. 华北克拉通的形成演化与成矿作用[J]. 矿床地质,2010,29(1):24-36. Zhai Minguo. Tectonic Evolution and Metallogenesis of North China Craton[J]. Mineral Deposits, 2010, 29(1):24-36. [56] 张晗,孙丰月. 中条山同善地区虎坪杂岩锆石U-Pb年龄、Hf同位素特征及地质意义[J]. 吉林大学学报(地球科学版),2012, 42(3):733-746. Zhan Han, Sun Fengyue. U-Pb Geochronology and Hf Isotope Geochemistry of the Zircon from Huping Complex in Tongshan Area of Zhongtiaoshan Mountains and Its Geologic Implications[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(3):733-746. [57] 郑培玺, 金巍, 周燕,等. 辽西地区台子里花岗质片麻岩锆石U-Pb年龄及其地质意义[J]. 吉林大学学报(地球科学版),2009,39(3):455-460. Zheng Peixi, Jin Wei, Zhou Yan, et al. Zircon U-Pb Age and Geological Significance of the Taizili Granitic Gneiss from Western Liaoning Province[J]. Journal of Jilin University(Earth Science Edition), 2009, 39(3):455-460. [58] 席怡,何登发,孙衍鹏,等.克拉通演化的超大陆背景与克拉通盆地的成因制约[J],地质科学,2014, 49(4):1093-1112. Xi Yi, He Dengfa, Sun Yanpeng, et al. Supercontinent Background of the Evolution of Cratons and the Genetic Mechanism of the Cratonic Basins[J]. Chinese Journal of Geology, 2014, 49(4):1093-1112. [59] Santanu K B, Simon A W, Anubha B, et al. Growth of the Greater Indian Landmass and Its Assembly in Rodinia:Geochronological Evidence from the Central Indian Tectonic Zone[J]. Gondwana Research, 2012, 22:54-72. |
[1] | 张聪, 石砥石, 张子亚, 陈科, 苑坤, 乔计花, 彭芳苹. 云南楚雄盆地西部高精度重磁电特征及基底特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 863-871. |
[2] | 展铭望, 付广, 仇翠莹, 杨在增. 一种新的断裂破坏泥岩盖层程度的综合研究方法[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1687-1694. |
[3] | 王伟, 付广, 胡欣蕾. 断裂对盖层封气综合能力破坏程度的研究方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(3): 685-693. |
[4] | 杨海燕, 岳建华, 徐正玉, 张华, 姜志海. 覆盖层影响下典型地-井模型瞬变电磁法正演[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1527-1537. |
[5] | 周建波, 石爱国, 景妍. 东北地块群:构造演化与古大陆重建[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1042-1055. |
[6] | 吕延防, 韦丹宁, 孙永河, 胡明, 刘哲, 孙同文, 王海学, 许辰璐. 南堡凹陷断层对中、上部含油组合油气成藏的控制作用[J]. 吉林大学学报(地球科学版), 2015, 45(4): 971-982. |
[7] | 刘财, 杨宝俊, 鹿琪, 冯晅, 刘洋, 王典. 黑龙江板块构造地球物理研究基本进展[J]. J4, 2012, 42(5): 1497-1505. |
[8] | 王微, 王世称, 刘光胜, 马生忠. 运用综合信息开展地震区划[J]. J4, 2011, 41(3): 892-899. |
[9] | 嵇艳鞠, 栾卉, 李肃义, 万玲, 王远, 许洋铖, 李丽, 林君. 全波形时间域航空电磁探测分辨率[J]. J4, 2011, 41(3): 885-891. |
[10] | 付广, 臧凤智. 徐深大气田形成的有利地质条件[J]. J4, 2011, 41(1): 12-20. |
[11] | 李雄炎, 李洪奇, 阴平, 陈亦寒, 周金煜. 柴达木盆地三湖地区第四系低饱和度气层的成因机理[J]. J4, 2010, 40(6): 1241-1247. |
[12] | 高福红, 王枫, 曹花花, 郑宇航, 刘军. 三江盆地绥滨断陷基底花岗岩的锆石U-Pb年代学及其构造意义[J]. J4, 2010, 40(4): 955-960. |
[13] | 付晓飞, 沙威, 王磊, 刘晓波. 松辽盆地幔源成因CO2气藏分布规律及控制因素[J]. J4, 2010, 40(2): 253-263. |
[14] | 付广, 胡明, 于丹. 火山岩盖层类型及封气能力--以松辽盆地徐家围子断陷为例[J]. J4, 2010, 40(2): 237-244. |
[15] | 于丹, 付晓飞, 吕延防, 付广, 胡明. 徐家围子断陷深层天然气盖层特征及封盖性评价[J]. J4, 2009, 39(5): 773-780. |
|