吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (2): 504-513.doi: 10.13278/j.cnki.jjuese.20170166

• 地质工程与环境工程 • 上一篇    下一篇

板裂千枚岩微观结构与力学性质

周阳1, 苏生瑞1, 李鹏1, 马洪生2, 张晓东1   

  1. 1. 长安大学地质工程与测绘学院, 西安 710054;
    2. 四川省交通运输厅公路规划勘察设计研究院, 成都 610041
  • 收稿日期:2017-12-23 出版日期:2019-03-26 发布日期:2019-03-28
  • 作者简介:周阳(1989-),男,博士研究生,主要从事岩土工程方面的研究,E-mail:zhoul1020@126.com
  • 基金资助:
    四川省交通建设科技项目(2015A1-3);中央高校基本科研业务费资助项目(310826151048)

Microstructure and Mechanical Properties of Broken Phyllite

Zhou Yang1, Su Shengrui1, Li Peng1, Ma Hongsheng2, Zhang Xiaodong1   

  1. 1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    2. Sichuan Provincial Transport Department Highway Planning, Survey, Design and Research Institute, Chengdu 610041, China
  • Received:2017-12-23 Online:2019-03-26 Published:2019-03-28
  • Supported by:
    Supported by Project of Traffic Construction Science and Technology of Sichuan Province(2015A1-3) and Project of Basic Research Expenses of the Central Universities(310826151048)

摘要: 为了研究板裂千枚岩的微观结构及力学性质,以汶川-马尔康高速公路沿线典型的板裂千枚岩为研究对象,进行了X衍射,薄片鉴定和单轴、三轴压缩试验。结果表明:1)板裂千枚岩微观结构和矿物成分比较复杂,具有明显的脆、塑性变形和裂隙,结构稳定性差;2)板裂千枚岩的各向异性明显,结构面夹角从0°到90°,板裂千枚岩的弹性模量、抗压强度、黏聚力和内摩擦角先减小后增大,呈V型分布规律;3)板裂千枚岩的破裂模式与结构面夹角和围压的大小密切相关,其破裂模式共有顺结构面的张拉劈裂破坏、顺结构面的剪切滑移破坏、Y型张拉-剪切复合破坏、顺结构面和贯穿结构面的复合张剪破坏、贯穿结构面的剪切破坏5种类型;4)随着围压的增大,不同结构面夹角试样的强度、变形参数和破裂模式的各向异性逐渐减弱;5)最大主应力与结构面的组合方式控制着岩石的破裂模式和力学性质,这是板裂板裂千枚岩显示各向异性的根本原因。

关键词: 板裂千枚岩, 微观结构, 力学性质, 各向异性, 破裂模式

Abstract: In order to study microstructure and mechanical properties of broken phyllite, the typical broken phyllite along the Wenchuan-Maerkang expressway was taken as the research object. X-ray powder diffraction, thin slice identification, uniaxial and triaxial compression tests were carried out. The results show that:1) The microstructure and mineral components are very complex. Most of the rocks have obvious brittle, plastic deformations and fractures with poor structural stability. 2) Significant anisotropy of broken phyllite was observed. Some mechanical parameters increased after the first decrease, such as the elastic modulus, compressive strength, cohesion and friction angle. These mechanical parameters showed a V-shape when the angle varied from 0° to 90°. 3) The failure modes of broken phyllite are closely related to angles and the confining pressure, which can be summed up in five types:tensile splitting along structural plane, shearing slip failure structural plane, Y type tensile-shear compound failure, compound shear failure across and along structural plane, and shear failure cross structural plane. 4) With the increasing of confining pressure, the strength, deformation parameters and failure modes of rock samples gradually weakened. 5) The combination of the maximum principal stress and the structural plane controls the failure mode and mechanism of rock, and it is the fundamental reason for the anisotropy of broken phyllite.

Key words: broken phyllite, microstructure, mechanical properties, anisotropy, failure modes

中图分类号: 

  • P642.3
[1] 陈晓利,周本刚,冉洪流,等.汶川地震中擂鼓镇地区的滑坡崩塌规律及预测[J].吉林大学学报(地球科学版),2010,40(6):1371-1379. Chen Xiaoli,Zhou Bengang,Ran Hongliu,et al. Analysis and Prediction of the Spatial Distribution of Landslides Triggered by Wenchuan Earthquakes in Leiguzhen Region[J]. Journal of Jilin University(Earth Science), 2010, 40(6):1371-1379.
[2] 苏生瑞,李松,程强. 汶川地震后公路边坡崩塌灾害发育规律[J]. 山地学报,2012,30(3):321-327. Su Shengrui, Li Song, Cheng Qiang. Characteristics of the Post-Earthquake Rockfalls of Highway Slopes in Wenchuan-Earthquake-Stricken Areas[J]. Journal of Mountain Science,2012,30(3):321-327.
[3] Ramamurthy T, Rao G V, Singh J. Engineering Behaviour of Phyllites[J]. Engineering Geology, 1993, 33(3):209-225.
[4] Kaifeng Hu, Qian Feng,Xutao Wang. Experimental Research on Mechanical Property of Phyllite Tunnel Surrounding Rock Under Different Moisture State[J]. Geotechnical and Geological Engineering,2017, 35(1):303-311.
[5] 孙萍,殷跃平,吴树仁,等.四川省青川县东河口滑坡岩石的抗剪断性质试验[J].地质通报,2009,28(8):1163-1167. Sun Ping, Yin Yueping, Wu Shuren, et al. Experimental Study on Shear Strength of Rocks from Donghekou Landslide in Qingchuan County, Sichuan Province, China[J]. Geological Bulletin of China, 2009,28(8):1163-1167.
[6] 郑达,巨能攀.某水电站坝址千枚岩的岩石强度各向异性特征[J].成都理工大学学报(自然科学版),2011,38(4):438-442. Zheng Da,Ju Nengpan. Study on Anisotropy Properties of Fresh Phyllite Rock Strength at a Hydropower Station Damsite[J]. Jouranl of Chengdu University of Technology (Science & Technology Edition), 2011,38(4):438-442.
[7] 曾鹏,纪洪广,赵奎,等.绢云母化千枚岩各向异性特性及长期强度试验研究[J].中国矿业,2016,25(4):141-145. Zeng Peng,Ji Hongguang, Zhao Kui, et al. Experimental Study on Long-Term Strength and Anisotropic Characteristics of Sericite Phillite[J]. China Mining Magazine, 2016,25(4):141-145.
[8] 孙萍,殷跃平,吴树仁,等. 东河口滑坡岩石微观结构及力学性质试验研究[J]. 岩石力学与工程学报,2010,29(增刊1):2872-2878. Sun Ping, Yin Yueping, Wu Shuren, et al. Experi-mental Study of Microstruture and Mechanical Properties of Rocks from Donghekou Landslide[J]. Chinese Journal of Rock Mechanics and Engineering,2010,29(Sup.1):2872-2878.
[9] 蒲超,孟陆波,李天斌.三轴压缩条件下千枚岩破裂与能量特征研究[J].工程地质学报,2017,25(2):359-366. Pu Chao,Meng Lubo, Li Tianbin. Rupture and Energy Properties of Phyllite Under Triaxial Compression Condition[J]. Journal of Engineering Geology,2017,25(2):359-366.
[10] 郑达,巨能攀. 千枚岩岩石微观破裂机理与断裂特征研究[J]. 工程地质学报,2011,19(3):317-322. Zheng Da,Ju Nengpan. Scanning Electronic Micros-cope Tests for Rock Micro-Rupture Mechanism and Fracture Characteristic of Phyllite[J]. Journal of Engineering Geology,2011,19(3):317-322.
[11] 王丰,孟陆波,李天斌.千枚岩常规三轴压缩各向异性特征试验研究[J].公路,2014,59(10):216-222. Wang Feng,Meng Lubo, Li Tianbin. Study of Phyllite Rock Anisotropy Properties by Conventional Triaxial Compressiontests[J]. Highway, 2014, 59(10):216-222.
[12] 吴永胜,谭忠盛,喻渝,等.川西北茂县群千枚岩各向异性力学特性[J].岩土力学,2018,39(1):207-215. Wu Yongsheng, Tan Zhongsheng, Yu Yu,et al. Anisotropically Mechanical Characteristics of Maoxian Group Phyllite in Northwest of Sichuan Province[J]. Rock and Soil Mechanics,2018,39(1):207-215.
[13] 吴永胜,谭忠盛,李少孟.挤压性大变形隧道围岩基本特性的试验研究[J].土木工程学报,2015,48(增刊1):398-402. Wu Yongsheng, Tan Zhongsheng,Li Shaomeng. Experimental Study on the Basic Characteristics of Tunnel in Squeezing Surrounding Rock with Large Deformation[J] China Civil Engineering Journal, 2015, 48(Sup.1):398-402.
[14] 赵建军,解明礼,李涛,等.饱水条件下千枚岩软化效应试验分析[J].工程地质学报,2017,25(6):1449-1454. Zhao Jianjun, Xie Mingli, Li Tao, et al. Softening of Effect of Phyllite with Water Saturation[J]. Journal of Engineering Geology,2017,25(6):1449-1454.
[15] 刘云鹏. 板裂原岩抗压试验及显微特征分析[J]. 长江科学院院报,2015,32(12):60-66, 81. Liu Yunpeng. Compression Test and Microscopic Characteristics Analysis of Slab-Rupture Original Rock[J]. Journal of Yangtze River Scientific Research Institute, 2015,32(12):60-66, 81.
[16] 谢和平,陈至达.岩石断裂的微观机理分析[J].煤炭学报,1989,9(2):57-67. Xie Heping, Chen Zhida. Analysis of Rock Fracture Micro-Mechanism[J]. Journal of China Coal Society,1989,9(2):57-67.
[17] 刘云鹏,邓辉,黄润秋. 板裂结构岩石力学试验及破裂断口细观形貌特征分析[J]. 岩石力学与工程学报,2015,34(增刊2):3852-3861. Liu Yunpeng, Deng Hui, Huang Runqiu. Mechanical Test of Slab-Rent Structure Rock and Mesoscopic Morphology Analysis of Rupture Surface[J]. Chinese Journal of Rock Mechanics and Engineering, 2015,34(Sup.2):3852-3861.
[18] Singh J, Ramamurthy T. Strength Anisotropies Inrocks[J]. Indian Geotechnical Journal,1989,19(2):147-166.
[1] 张文强, 殷长春, 刘云鹤, 张博, 任秀艳. 基于场延拓的海洋可控源电磁正演模拟及各向异性特征识别[J]. 吉林大学学报(地球科学版), 2019, 49(2): 578-590.
[2] 杨志龙, 殷长春, 张博, 刘云鹤, 任秀艳, 惠哲剑. 全拖曳式深海直流电阻率法三维任意各向异性正演模拟[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1845-1853.
[3] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[4] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[5] 胡欣蕾, 吕延防, 孙永河, 孙同文. 泥岩盖层内断层垂向封闭能力综合定量评价:以南堡凹陷5号构造东二段泥岩盖层为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 705-718.
[6] 殷长春, 杨志龙, 刘云鹤, 张博, 齐彦福, 曹晓月, 邱长凯, 蔡晶. 基于环形扫面测量的三维直流电阻率法任意各向异性模型响应特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 872-880.
[7] 曾昭发, 霍祉君, 李文奔, 李静, 赵雪宇, 何荣钦. 任意各向异性介质三维有限元航空电磁响应模拟[J]. 吉林大学学报(地球科学版), 2018, 48(2): 433-444.
[8] 贲放, 刘云鹤, 黄威, 徐驰. 各向异性介质中的浅海海洋可控源电磁响应特征[J]. 吉林大学学报(地球科学版), 2016, 46(2): 581-593.
[9] 莫绍星, 龙星皎, 李瀛, 郑菲, 施小清, 张可霓, 赵良. 基于TOUGHREACT-MP的苏北盆地盐城组咸水层CO2矿物封存数值模拟[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1647-1658.
[10] 张中庆, 庞兵强. 随钻电磁波测井数据处理新方法[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1720-1726.
[11] 张振波,轩义华,刘宾. 基于各向异性理论的深水区地震资料叠前处理技术[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1031-1038.
[12] 李继明,左三胜. 裂隙岩体岩石质量指标(RQD)的空间变化特征[J]. 吉林大学学报(地球科学版), 2014, 44(3): 946-953.
[13] 阚光明,苏远峰,刘保华,李官保,孟祥梅. 南黄海中部海底沉积物声阻抗特性[J]. 吉林大学学报(地球科学版), 2014, 44(1): 386-395.
[14] 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1904-1914.
[15] 沈金松,詹林森,马超. 裂缝等效介质模型对裂缝结构和充填介质参数的适应性[J]. 吉林大学学报(地球科学版), 2013, 43(3): 993-1003.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!