吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 693-704.doi: 10.13278/j.cnki.jjuese.20170176

• 地质与资源 • 上一篇    下一篇

超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例

孙海涛1, 钟大康1, 李勇2, 毛亚昆1, 杨宪彰1,2   

  1. 1. 中国石油大学(北京)地球科学学院, 北京 102249;
    2. 中国石油塔里木油田分公司, 新疆 库尔勒 841000
  • 收稿日期:2017-09-24 出版日期:2018-05-26 发布日期:2018-05-26
  • 作者简介:孙海涛(1985-),男,讲师,主要从事沉积岩石学方面的研究,E-mail:haitao.sun@cup.edu.cn
  • 基金资助:
    国家自然科学基金项目(41302108);国家重大科技专项项目(2016ZX05002-004-011)

Porosity Origin and Controlling Factors of Ultra-Deep, Low Porosity and Ultra-Low Permeability Sandstone Reservoirs: A Case Study of Bashijiqike Formation in Keshen Area of Kuqa Depression, Tarim Basin

Sun Haitao1, Zhong Dakang1, Li Yong2, Mao Yakun1, Yang Xianzhang1,2   

  1. 1. College of Geosciences, China University of Petroleum, Beijing 102249, China;
    2. PetroChina Tarim Oilfield Company, Korla 841000, Xinjiang, China
  • Received:2017-09-24 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41302108) and National Science and Technology Major Project (2016ZX05002-004-011)

摘要: 库车坳陷克深地区白垩系巴什基奇克组砂岩经过了漫长的埋藏过程和复杂的成岩演化,形成了一套超深低孔特低渗储层。本文详细描述了该储层的孔隙成因类型,并分析了其控制因素。通过鉴定大量铸体薄片和荧光薄片,并利用场发射扫描电镜与激光共聚焦显微镜等手段进行分析,综合考虑形态、规模和成因3个依据识别出8类孔隙和2类裂缝,认为该低孔特低渗储层为孔隙型储层,次生成因控制的孔隙占主导地位;并提出早期长时间浅埋藏及所处的碱性环境导致了弱压实及强胶结,后期的构造挤压进一步减孔,而晚期溶蚀虽是次生孔隙形成的主要原因,但其并未大规模有效改善储层的低孔现状。

关键词: 库车坳陷, 白垩系, 砂岩储层, 成岩作用, 控制因素

Abstract: As a result of a complex diagenetic evolution, a reservoir with low porosity and ultra-low permeability exists in the ultra-deep sandstones of Bashijiqike Formation of Cretaceous in the Keshen area of Kuqa depression, Tarim basin. This paper presents an overview of the types and origin of the sandstone porosity and the controlling factors. Based on the identification of many cast and fluorometric slices by using the field emission scanning electron microscope and confocal microscope, eight types of pores and two kinds of fissures in this sandstone reservoir are recognized according to their shape, scale and origin. The pores are dominated by the secondary pores, which is the result of the following complex geological process:1) The sandstone was buried shallow for a long time in the early stage, so no porosity-decreasing effect occurred during the weak compaction; 2) The Early Cementation saved some primary intergranular pores; 3) The porosity was further decreased by the effect of the tectonic compression in the late burial process;4) The secondary pores were mainly formed by the later dissolution, but which didn't evidently change the porosity of the sandstone reservoir.

Key words: Kuqa depression, Cretaceous, sandstones reservoir, diagenesis, controlling factors

中图分类号: 

  • P618.13
[1] 王红军,胡见义. 库车坳陷白垩系含油气系统与高压气藏的形成[J].天然气工业, 2002,22(1):5-8. Wang Hongjun, Hu Jianyi. Cretaceous Petroleum System and High Pressure Gas Reservoir Formation in Kuqa Depression[J]. Natural Gas and Industry, 2002, 22(1):5-8.
[2] 田作基,胡见义,宋建国,等. 塔里木库车陆内前陆盆地及其勘探意义[J].地质科学, 2002, 37(增刊1):105-112. Tian Zuoji, Hu Jianyi, Song Jianguo, et al. Kuqa Foreland Basin and Its Exploration in Tarim Basin[J]. Scientia Geologica Sinica, 2002, 37(Sup.1):105-112.
[3] 汤华国,王刚,彭轼,等. 库车坳陷天然气资源勘探前景[J].天然气地球科学, 2003,14(6):459-462. Tang Huaguo, Wang Gang, Peng Shi, et al. Exploration Prospects for Natural Gas in Kuqa Depression[J]. Natural Gas Geoscience, 2003,14(6):459-462.
[4] 王招明,谢会文,李勇,等. 库车前陆冲断带深层盐下大气田的勘探和发现[J].中国石油勘探, 2013,18(3):1-11. Wang Zhaoming, Xie Huiwen, Li Yong, et al. Exploration and Discovery of Large and Deep Subsalt Gas Fields in Kuqa Foreland Thrust Belt[J]. China Petroleum Exploration, 2013, 18(3):1-11.
[5] 贾进华. 库车前陆盆地白垩纪巴什基奇克组沉积层序与储层研究[J].地学前缘, 2000,7(3):133-143. Jia Jinhua. Depositional Sequence and Reservoir of Cretaceous Bashijiqike Formation in Kuqa Foreland Basin[J]. Earth Science Frontiers, 2000,7(3):133-143.
[6] 顾家裕,方辉,贾进华. 塔里木盆地库车坳陷白垩系辫状三角洲砂体成岩作用和储层特征[J].沉积学报, 2001,19(4):517-523. Gu Jiayu, Fang Hui, Jia Jinhua. Diagenesisand Reservoir Characteristics of Cretaceous Braided Delta Sandbody in Kuqa Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2001,19(4):517-523.
[7] 钟大康,朱筱敏. 克拉2气田储层特征及优质储层形成机理[J].天然气工业, 2007,27(1):8-11. Zhong Dakang, Zhu Xiaomin. Reservoir Characteristics and Origin of High-Quality Sandstones Reservoir of KL2 Gas Field[J]. Natural Gas Industry,2007,27(1):8-11
[8] 张惠良,张荣虎,杨海军,等. 超深层裂缝-孔隙型致密砂岩储集层表征与评价:以库车前陆盆地克拉苏构造带白垩系巴什基奇克组为例[J].石油勘探与开发, 2014,41(2):158-167. Zhang Huiliang, Zhang Ronghu, Yang Haijun, et al. Characterization and Evaluation of Ultra-Deep Fracture-Pore Tight Sandstone Reservoirs:A Case Study of Cretaceous Bashijiqike Formation in Kelasu Tectonic Zone in Kuqa Foreland Basin, Tarim, NW China[J]. Petroleum Exploration and Development, 2014,41(2):158-167.
[9] 肖建新,林畅松,刘景彦. 塔里木盆地北部库车坳陷白垩系层序地层与体系域特征[J].地球学报, 2002,23(5):453-458. Xiao Jianxin, Lin Changsong, Liu Jingyan. Characteristics of Cretaceous Sequence Stratigraphy and System Tract in Kuqa Depression, Northern Tarim Basin[J]. Acta Geoscientia Sinica, 2002, 23(5):453-458.
[10] 胡涛,张柏桥,舒志国,等. 库车坳陷白垩系巴什基奇克组露头储层特征[J].石油与天然气地质, 2003,24(2):171-174. Hu Tao, Zhang Baiqiao, Shu Zhiguo, et al. Reservoir Characteristics in Cretaceous Bashijiqike Formation Outcrop in Kuqa Depression[J]. Oil & Gas Geology, 2003,24(2):171-174.
[11] 肖建新,林畅松,刘景彦. 塔里木盆地北部库车坳陷白垩系沉积古地理[J].现代地质, 2005,19(2):253-260. Xiao Jianxin, Lin Changsong, Liu Jingyan. Depositional Palaeogeography of Cretaceous of Kuqa Depression[J]. Geoscience, 2005,19(2):256-258.
[12] 彭守涛,宋海明. 库车坳陷北部白垩系沉积速率分析[J].沉积学报, 2006,24(5):641-649. Peng Shoutao, Song Haiming. The Sedimentation Rates Analysis of Cretaceous Depositional Succession in the Northern Kuqa Depression, Northwest China[J]. Acta Sedimentologica Sinica, 2006,24(5):641-649.
[13] 严德天,王华,王家豪,等. 库车坳陷东部白垩系沉积体系分析及有利油气勘探区带预测[J].地质学报, 2006,80(3):382-389. Yan Detian, Wang Hua, Wang Jiahao, et al. Analysis of the Cretaceous Sequence Stratigraphy Pattern and Controlling Factors in Kuqa Foreland Basin[J]. Acta Geologica Sinica, 2006,80(3):382-389.
[14] 严德天,王华,王家豪,等. 库车前陆盆地白垩系层序地层样式及控制因素分析[J].沉积学报, 2006,24(6):841-848. Yan Detian, Wang Hua, Wang Jiahao, et al. Analysis of the Cretaceous Sequence-Stratigraphic Pattern and Controlling Factors in Kuqa Foreland Basin[J]. Acta Sedimentologica Sinica, 2006,24(6):841-848.
[15] 贾进华,顾家裕. 克拉2气田优质砂岩储层控制因素与孔隙演化[J].科学通报, 2002, 47(增刊1):97-102. Jia Jinhua, Gu Jiayu. Porosity Evolution and Controlling Factors of High-Quality Sandstones Reservoir of KL2 Gas Field[J]. Chinese Science Bulletin, 2002, 47(Sup.1):97-102.
[16] 刘建清,赖兴运,于炳松,等. 库车坳陷白垩系储层的形成环境及成因分析[J].现代地质. 2004, 18(2):249-255. Liu Jianqing, Lai Xingyun, Yu Bingsong, et al.The Origin of the Deep-Burial High-Quality Reservoir and the Model of Diagenetic Evolution in Kela-2 Gas Field, Kuqua Depression[J]. Acta Sedimentologica Sinica, 2005, 18(2):249-255.
[17] 张荣虎,张惠良,寿建峰,等. 库车坳陷大北地区下白垩统巴什基奇克组储层成因地质分析[J].地质科学, 2008, 43(3):507-517. Zhang Ronghu, Zhang Huiliang, Shou Jianfeng, et al. Geological Analysis on Reservoir Mechanism of the Lower Cretaceous Bashijiqike Formation in Dabei Area of the Kuqa Depression[J]. Chinese Journal of Geology, 2008, 43(3):507-517.
[18] 张荣虎,张惠良,马玉杰,等. 特低孔特低渗高产储层成因机制:以库车坳陷大北1气田巴什基奇克组储层为例[J].天然气地球科学, 2008,19(1):75-82. Zhang Ronghu, Zhang Huiliang, Ma Yujie, et al. Origin of Extra Low Porosity and Permeability High Production Reservoirs:A Case from Bashijiqike Reservoir of Dabei-1 Oilfield, Kuqa Depression[J]. Natrual Gas Geoscience, 2008,19(1):75-82.
[19] 张荣虎,杨海军,王俊鹏,等. 库车坳陷超深层低孔致密砂岩储层形成机制与油气勘探意义[J].石油学报, 2014,35(6):1057-1069. Zhang Rohu, Yang Haijun, Wang Junpeng, et al. The Formation Mechanism and Exploration Significance of Ultra-Deep, Low-Porosity and Tight Sandstone Reservoirs in Kuqa Depression, Tarim Basin[J]. Acta Petrolei Sinica, 2014,35(6):1057-1069.
[20] 潘荣,朱筱敏,刘芬,等. 克拉苏冲断带白垩系储层成岩作用及其对储层质量的影响[J]. 沉积学报, 2014,32(5):973-980. Pan Rong, Zhu Xiaomin, Liu Fen, et al. Cretaceous Diagenesis and Its Control on Reservoir in Kelasu Structure Zone, Kuqa Depression[J]. Acta Sedimentologica Sinica, 2014,32(5):973-980.
[21] 张师本,黄智斌,朱怀诚,等. 塔里木盆地覆盖区显生宙地层[M]. 北京:石油工业出版社, 2004:89-99. Zhang Shiben, Huang Zhibin, Zhu Huaicheng, et al. The Phanerozoic Stratigraphic in Coverage Area of Tarim Basin[M]. Beijing:Petroleum Industry Press, 2004:89-99.
[22] 谭秀成,王振宇,李凌,等. 库车前陆盆地第三系沉积相配置及演化研究[J].沉积学报, 2006, 24(6):790-797. Tan Xiucheng, Wang Zhenyu, Li Ling, et al. Arrangement and Evolution of Tertiary Sedimentary Facies in Kuche Foreland Basin, Xinjiang[J]. Acta Sedimentologica Sinica, 2006, 24(6):790-797.
[23] Li Zhong,Guo Hong,Wang Daoxuan, et al. Meso-zoic-Cenozoic Tectonic Transition in Kuqa Depression-Tianshan, Northwest China:Evidence from Sandstone Detrital and Geochemical Records[J]. Science in China:Series D:Earth Science, 48(9):1387-1402.
[24] 李忠,王清晨,王道轩,等. 晚新生代天山隆升与库车坳陷构造转换的沉积约束[J].沉积学报, 2003, 21(1):38-45. Li Zhong,Wang Qingchen, Wang Daoxuan, et al. Depositional Record Constraints on Late Cenozoic Uplift of Tianshan and Tectonic Transformation in Kuqa Depression, West China[J].Acta Sedimentologica Sinica, 2003, 21(1):38-45.
[25] 何光玉,卢华复,杨树锋,等. 库车中新生代盆地沉降特征[J]. 浙江大学学报(理学版), 2004, 32(1):110-113. He Guangyu, Lu Huafu, Yang Shufeng, et al. Subsiding Features of the Mesozoic and Cenozoic Kuqa Basin,Northwestern China[J]. Journal of Zhejiang University(Science Edition), 2004, 32(1):110-113.
[26] 李双建,王清晨,李忠. 库车坳陷库车河剖面重矿物分布特征及其地质意义[J].岩石矿物学杂志, 2005, 15(1):53-61. Li Shuangjian, Wang Qingchen, Li Zhong. Characteristics of Mesozoic and Cenozoic Heavy Minerals from Kuche River Section in Kuche Depression and their Geological Implications[J]. Acta Petrologica et Mineralogica, 2005, 15(1):53-61.
[27] 李维锋,王成善,高振中,等. 塔里木盆地库车坳陷中生代沉积演化[J].沉积学报, 2000, 18(4):534-538. Li Weifeng, Wang Chengshan, Gao Zhenzhong, et al. Sedimentary Evolution of Mesozoic Era in Kuche Depression, Tarim Basin[J]. Acta Sedimentologica Sinica, 2000, 18(4):534-538.
[28] 漆家福,雷刚林,李明刚,等. 库车坳陷-南天山盆山过渡带的收缩构造变形模式[J].地学前缘, 2009,16(3):120-128. Qi Jiafu, Lei Ganglin, Li Minggang, et al. A Model of Contractional Structure for Transition Belt Between Kuche Depression and Southern Tianshan Uplift[J]. Earth Science Frontiers, 2009, 16(3):120-128.
[29] 漆家福,李勇,吴超,等. 塔里木盆地库车坳陷收缩构造变形模型若干问题的讨论[J].中国地质, 2013,40(1):106-120. Qi Jiafu, Li Yong, Wu Chao, et al. The Interpretation Models and Discussion on the Contractive Structure Deformation of Kuqa Depression, Tarim Basin[J]. Geology in China, 2013,40(1):106-120.
[30] 杨玲,韩继勇,孙卫,等. 鄂尔多斯盆地碎屑岩储集体中的次生孔隙类型[J]. 西北大学学报(自然科学版), 2005,35(5):131-134. Yang Ling, Han Jiyong, Sun Wei, et al. The Secondary Porosity Type of the Clastic Rock Storage in Ordos Basin[J]. Journal of Northwest University(Natural Science Edition), 2005,35(5):131-134.
[31] 朱筱敏,王英国,钟大康,等. 济阳坳陷古近系储层孔隙类型与次生孔隙成因[J]. 地质学报, 2007,81(2):197-204. Zhu Xiaomin, Wang Yingguo, Zhong Dakang, et al. Pore Types and Secondary Pore Evolution of Paleogene Reservoir in the Jiyang Sag[J]. Acta Geologica Sinica, 2007,81(2):197-204.
[32] 祝海华,钟大康,张亚雄,等. 川南地区三叠系须家河组致密砂岩孔隙类型及物性控制因素[J].石油与天然气地质, 2014,35(1):65-76. Zhu Haihua, Zhong Dakang, Zhang Yaxiong, et al. Pore Types and Controlling Factors on Porosity and Permeability of Upper Triassic Xujiahe Tight Sandstone Reservoir in Southern Sichuan Basin[J]. Oil & Gas Geology, 2014,35(1):65-76.
[33] Schmidt V, Mcdonald D A. The Role of Secondary Porosity in the Course of Sandstone Diagenesis[J]. Special Publications, 1979, 26(8):175-207.
[34] Surdam R C, Boese S W, Crossey L J. The Che-mistry of Secondary Porosity[J]. AAPG Memoir, 1984, 37(2):183-200.
[35] Bjorlykke K. Relationships Between Depositional Environments, Burial History and Rock Properties:Some Principal Aspects of Diagenetic Process in Sedimentary Basins[J]. Sedimentary Geology, 2013, 301(1):1-14.
[36] Zhong Dakang, Zhu Xiaomin, Wang Hongjun. Cha-racteristic and Formation Mechanism of Deep Buried Clastic Reservoir[J]. Science in China:Series D:Earth Science, 2008, 38(Sup.1), 11-18.
[37] 孙海涛,钟大康,张湘宁,等. 鄂尔多斯盆地长北气田山西组二段低孔低渗储层特征及形成机理[J]. 沉积学报, 2011,29(4):724-733. Sun Haitao, Zhong Dakang, Zhang Xiangning, et al. Characteristics and Mechanism of Permian Shanxi Tight Reservoir of Changbei Gas Field, Ordos Basin[J]. Acta Sedimentologica Sinica, 2011,29(4):724-733.
[38] 郭迎春, 庞雄奇, 陈冬霞,等. 川西坳陷中段须二段致密砂岩储层致密化与相对优质储层发育机制[J]. 吉林大学学报(地球科学版), 2012, 42(增刊2):21-32. Guo Yingchun, Pang Xiongqi, Chen Dongxia, et al. Densification of Tight Gas Sandstones and Formation Mechanism of Relatively High-Quality Reservoir in the Second Member of theXujiahe Formation, Western Sichuan Depression[J]. Journal of Jilin University(Earth Science Edition), 2012, 42(Sup.2):21-32.
[39] 潘荣,朱筱敏,张剑锋,等. 克拉苏冲断带深层碎屑岩有效储层物性下限及控制因素[J].吉林大学学报(地球科学版), 2015, 45(4):1011-1020. Pan Rong, Zhu Xiaomin, Zhang Jianfeng, et al. Lower Physical Property Limit and Controlling Factors on Deep Effective Clastic Reservoirs in Kelasu Structure Zone[J]. Journal of Jilin University(Earth Science Edition), 2015, 45(4):1011-1020.
[40] 卓勤功,赵孟军,李勇,等. 库车前陆盆地古近系岩盐对烃源岩生气高峰期的迟缓作用及其意义[J].天然气地球科学, 2014,25(12):1903-1912. Zhuo Qingong, Zhao Mengjun, Li Yong, et al. The Delay of Paleogene Evaporate on the Gas Generation Peak of Source Rocks and Its Significance in Kuqa Foreland Basin[J]. Natural Gas Geoscience, 2014,25(12):1903-1912. 图版图版说明a.残余粒间孔,克深2-1-5井,6714.35 m,单片光,箭头所指的残余粒间孔,颗粒边缘平直、无溶蚀痕迹,孔隙多呈三角形,且粒间缺乏胶结物;b.残余粒间溶孔,克深207井,6797.91 m,激光共聚焦照片,箭头所指的孔隙具有左上至右下的定向性,且孔隙呈压扁状,内部见少量早期胶结物的残余;c.晚期粒间溶孔,克深201井,6509.67 m,激光共聚焦照片,箭头所指的孔隙中见到大量粒间胶结物,且胶结物边缘呈锯齿状或港湾状,具有溶蚀特征,整个孔隙未表现出受构造挤压影响的定向性和挤压变形特征,与图版b具有明显区别;d.晚期粒间溶蚀扩大孔,克深202井,6799.7 m,激光共聚焦照片,箭头所指的孔隙与图版c类似,但是孔径大,受溶蚀后颗粒边缘呈现凹凸状,但孔隙同样不具挤压变形特征和定向性;e.粒内溶孔,克深208井,6605.76 m,箭头所指的是颗粒内溶孔,长石或岩屑内部被溶(左侧,单片光),孔隙不规则,溶蚀强时会形成铸模孔,溶蚀弱时常形成微孔隙,荧光薄片(右侧)下易识别;f.杂基微孔和粒间微孔,克深2-1-5井,6717.10 m,左侧为普通铸体薄片单片光,箭头所指表明颗粒内,粒间杂基均被油气侵染,表明存在微孔隙,右侧为荧光薄片,在荧光薄片内清晰可见粒间微孔隙、杂基内微孔隙和粒内微孔;g.粒内微孔和裂缝,克深207井,6870.5 m,场发射扫描照片,箭头所指的粒内微孔为纳米级,且颗粒表面有网状缝,可作为喉道;h.张性缝,克深207井,6798 m,单片光,箭头所指为张性裂缝,沿裂缝溶蚀,裂缝两侧呈港湾状;i.高角度缝,克深8井,6736.38 m,岩心上的直劈缝;j.粒缘缝,克深8003井,6779.22 m,激光共聚焦照片,颗粒压实后,紧贴颗粒边缘形成粒缘缝,可作为有效的渗流通道。
[1] 陈爱民. 澳大利亚Bonaparte盆地WA-406-P区块油气成藏条件及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 965-980.
[2] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[3] 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667.
[4] 高崇龙, 纪友亮, 靳军, 王剑, 任影, 车世琦, 王茹, 桓芝俊. 准噶尔盆地莫索湾地区清水河组深层优质储层特征及其物性控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(4): 990-1006.
[5] 刘鑫金, 冯阵东, 李聪, 周艳, 王亚明. 近源湖盆砂砾岩储层次生溶孔成因探讨——以查干凹陷祥6井区为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 393-404.
[6] 贾珍臻, 林承焰, 任丽华, 董春梅, 宫宝. 苏德尔特油田低渗透凝灰质砂岩成岩作用及储层质量差异性演化[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1624-1636.
[7] 温志良, 姜福平, 钟长林, 姜雪飞, 王果谦, 齐岩. 松辽盆地东南隆起超大型油页岩矿床特征及成因[J]. 吉林大学学报(地球科学版), 2016, 46(3): 681-691.
[8] 郭荣涛, 赵习, 刘红光, 石开波, 刘婧, 蒋启财. 兰州盆地下白垩统碎屑岩层序地层序列:祁连山早白垩世隆升的沉积学响应[J]. 吉林大学学报(地球科学版), 2016, 46(2): 321-335.
[9] 陈波, 王子天, 康莉, 张顺存, 史基安. 准噶尔盆地玛北地区三叠系百口泉组储层成岩作用及孔隙演化[J]. 吉林大学学报(地球科学版), 2016, 46(1): 23-35.
[10] 操应长, 张会娜, 葸克来, 赵贤正, 周磊, 崔周旗, 金杰华. 饶阳凹陷南部古近系中深层有效储层物性下限及控制因素[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1567-1579.
[11] 徐波, 唐铁柱, 李辰. 鄂尔多斯盆地中东部马五段碳酸盐岩气藏富气主控因素—以陕200井区为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1299-1309.
[12] 马伯永, 王根厚, 李尚林, 徐红燕. 羌塘盆地东部中侏罗统陆源碎屑与碳酸盐混合沉积成岩特征[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1310-1321.
[13] 姚泾利, 赵彦德, 邓秀芹, 郭正权, 罗安湘, 楚美娟. 鄂尔多斯盆地延长组致密油成藏控制因素[J]. 吉林大学学报(地球科学版), 2015, 45(4): 983-992.
[14] 潘荣, 朱筱敏, 张剑锋, 何敏, 邸宏利. 克拉苏冲断带深层碎屑岩有效储层物性下限及控制因素[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1011-1020.
[15] 曹玲珑,王建华,黄楚光,倪志鑫,金钢雄,瓦西拉里,陈慧娴. 大亚湾表层沉积物重金属元素形态特征、控制因素及风险评价分析[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1988-1999.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!