吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (3): 678-692.doi: 10.13278/j.cnki.jjuese.20160332

• 地质与资源 • 上一篇    下一篇

陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例

冯小龙1, 敖卫华2, 唐玄3   

  1. 1. 中国地质大学(北京)工程技术学院, 北京 100083;
    2. 中国地质大学(北京)材料科学与工程学院, 北京 100083;
    3. 中国地质大学(北京)页岩气勘查与评价国土资源部重点实验室, 北京 100083
  • 收稿日期:2017-11-11 出版日期:2018-05-26 发布日期:2018-05-26
  • 通讯作者: 敖卫华(1978-),男,高级实验师,博士,主要从事矿物及有机岩石学方面的研究,E-mail:awh0223@cugb.edu.cn E-mail:awh0223@cugb.edu.cn
  • 作者简介:冯小龙(1989-),男,博士研究生,主要从事页岩气储层物性方面的研究,E-mail:fengxl2000@yeah.net
  • 基金资助:
    国家自然科学基金项目(41302104,41102088)

Characteristics of Pore Development and Its Main Controlling Factors of Continental Shale Gas Reservoirs: A Case Study of Chang 7 Member in Ordos Basin

Feng Xiaolong1, Ao Weihua2, Tang Xuan3   

  1. 1. School of Engineering Technology, China University of Geosciences, Beijing 100083, China;
    2. School of Materials Science and Engineering, China University of Geosciences, Beijing 100083, China;
    3. Key Laboratory of Shale Gas Exploration and Evaluation(Ministry of Land and Resources), China University of Geosciences, Beijing 100083, China
  • Received:2017-11-11 Online:2018-05-26 Published:2018-05-26
  • Supported by:
    Supported by National Natural Science Foundation of China (41302104, 41102088)

摘要: 鄂尔多斯盆地延长组是目前最具页岩气潜力的研究层段之一。本文以该盆地东部长7段为研究对象,运用氮气吸附法及氩离子剖光扫描电镜分析对页岩气储层孔隙结构及孔隙类型进行分析和测定,并结合岩石矿物组分、有机质成熟度以及总有机碳(TOC)质量分数,讨论了孔隙结构和影响因素。结果表明,长7段页岩气储层孔隙结构复杂,根据吸附回线形态可分为2类:Ⅰ类回线主要对应孔径为2.6~4.2 nm的狭缝结构或楔形结构的平行板状孔或微裂缝,具体可分为黏土矿物矿片间孔隙、有机质内狭缝状孔隙及基质微裂隙等类型;Ⅱ类回线主要为分布于2.3~3.1、3.5~3.8、4.3~5.2 nm等多个孔径段的开放型圆筒状孔,包括有机质孔和残余粒间孔。中孔和微孔是总孔体积和比表面积的主要贡献者。w(TOC)是延长组页岩总孔体积及比表面积的主要控制因素,与总孔体积及比表面积均呈正相关关系;镜质体反射率及矿物含量对孔隙发育的控制作用不明显,但黏土矿物对微孔孔容贡献较大,其中伊利石质量分数与BET比表面积及孔容有较好的相关性。

关键词: 页岩气, 储层, 孔隙结构, 孔径分布, 主控因素, 鄂尔多斯盆地

Abstract: The Yanchang Formation is one of the most promising area for shale gas exploration in the Ordos basin. The Chang 7 Member of the Yanchang Formation in the eastern Ordos basin was selected as the research object. Based on the nitrogen isothermal adsorption, field emission scanning electron microscopy (FESEM) in combination with the laboratory tests on mineralogy, maturity and TOC, the pore types, structures as well as their controlling factors were analyzed respectively. As shown in the results, the pore structure of Chang 7 Member shale gas reservoir is complex, and can be divided into 2 types according to the adsorption loop morphology. TypeⅠloops mainly correspond to the parallel plate-like holes or micro-cracks with a pore structure of 2.6-4.2 nm in diameter or in a wedge structure, and can be classified into clay-mineral intergranular pores, organic-matrix-like pores, and matrix microcracks; typeⅡloops are mainly open-ended cylindrical boreholes in 2.3-3.1 nm, 3.5-3.8 nm, and 4.3-5.2 nm, including organic pores and residual intergranular pores. Mesopores and micropores are major contributors to total volume and specific surface area,which is controlled mainly by TOC with a positive correlation with both total volume and specific surface area. Neither Ro nor mineral contents show any influences on the pore structure; however, clay minerals contribute a lot to the volume of micropores, which is supported by the relatively positive correlation between illite contents and the total volume and specific surface area.

Key words: shale gas, reservoirs, pore structure, pore distribution, controlling factors, Ordos basin

中图分类号: 

  • P618.13
[1] 付金华, 郭少斌, 刘新社, 等. 鄂尔多斯盆地上古生界山西组页岩气成藏条件及勘探潜力[J]. 吉林大学学报(地球科学版), 2013, 43(2):382-389. Fu Jinhua, Guo Shaobin, Liu Xinshe, et al. Shale Gas Accumulation Condition and Exploration Potential of the Upper Paleozoic Shanxi Formation in Ordos Basin[J]. Jounal of Jilin University (Earth Science Edition), 2013, 43(2):382-389.
[2] 卢双舫, 黄文彪, 陈方文,等. 页岩油气资源分级评价标准探讨[J]. 石油勘探与开发, 2012, 39(2):249-256. Lu Shuangfang, Huang Wenbiao, Chen Fangwen, et al. Classification and Evaluation Criteria of Shale Oil and Gas Resources:Discussion and Application[J]. Petroleum Exploration and Development, 2012, 39(2):249-256.
[3] 邹才能, 杨智, 崔景伟,等. 页岩油形成机制、地质特征及发展对策[J]. 石油勘探与开发, 2013, 40(1):14-26. Zou Caineng, Yang Zhi, Cui Jingwei, et al. Formation Mechanism, Geological Characteristics, and Development Strategy of Nonmarine Shale Oil in China[J]. Petroleum Exploration and Development, 2013, 40(1):14-26.
[4] 王志刚. 涪陵页岩气勘探开发重大突破与启示[J]. 石油与天然气地质, 2015, 36(1):1-6. Wang Zhigang. Breakthrough of Fuling Shale Gas Exploration and Development and Its Inspiration[J]. Oil & Gas Geology, 2015, 36(1):1-6.
[5] 郭彤楼. 涪陵页岩气田发现的启示与思考[J]. 地学前缘, 2016,23(1):29-43. Guo Tonglou. Discovery and Characteristics of the Fuling Shale Gas Field and Its Enlightenment and Thinking[J]. Earth ScienceFrontiers,2016,23(1):29-43
[6] 韩辉, 钟宁宁, 陈聪,等. 西北地区中小型盆地侏罗系陆相泥页岩的含气性[J]. 科学通报, 2014,59(9):809-815. Han Hui, Zhong Ningning, Chen Cong, et al. The Gas Potential of Jurassic Continental Shale in the Middle-Small Basins, Northwest China[J]. Chinese Science Bulletin, 2014, 59(9):809-815.
[7] 董大忠, 邹才能, 杨桦,等. 中国页岩气勘探开发进展与发展前景[J]. 石油学报, 2012, 33(增刊1):107-114. Dong Dazhong, Zou Caineng, Yang Hua, et al. Progress and Prospects of Shale Gas Exploration and Development in China[J]. Acta Petrolei Sinica, 2012,33(Sup. 1):107-114.
[8] 董大忠, 高世葵, 黄金亮,等. 论四川盆地页岩气资源勘探开发前景[J]. 天然气工业, 2014, 34(12):1-15. Dong Dazhong, Gao Shikui, Huang Jinliang, et al. A Discussion on the Shale Gas Exploration & Development Prospect in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(12):1-15.
[9] 国土资源部油气资源战略研究中心. 全国页岩气资源潜力调查评价及有利区优选(2009-2011年):2014年度国土资源科学技术奖一等奖成果[J]. 科技成果管理与研究, 2014(12):57-60. Strategic Research Center for Oil and Gas Resources, Ministry of Land and Resources. Evaluation of Shale Gas Resource Potential and Optimization of Favorable Areas in China (2009-2011):First Prize of Science and Technology of Land and Resources in 2014[J]. Management and Research on Scientific & Technological Achievements, 2014(12):57-60.
[10] 杨华, 邓秀芹. 构造事件对鄂尔多斯盆地延长组深水砂岩沉积的影响[J]. 石油勘探与开发, 2013, 40(5):513-520. Yang Hua, Deng Xiuqin. Deposition of Yanchang Formation Deep-Water Sandstone Under the Control of Tectonic Events, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(5):513-520.
[11] Tang X, Zhang J, Jin Z, et al. Experimental Investigation of Thermal Maturation on Shale Reservoir Properties from Hydrous Pyrolysis of Chang 7 Shale, Ordos Basin[J]. Marine & Petroleum Geology, 2015, 64(Sup.1):165-172.
[12] 杨超, 张金川, 唐玄. 鄂尔多斯盆地陆相页岩微观孔隙类型及对页岩气储渗的影响[J]. 地学前缘, 2013, 20(4):240-250. Yang Chao, Zhang Jinchuan, Tang Xuan. Microscopic Pore Types and Its Influence on Storage and Permeability of Continental Shale Gas, Ordos Basin[J]. Earth Science Frontiers, 2013, 20(4):240-250.
[13] 赵靖舟, 王芮, 耳闯. 鄂尔多斯盆地延长组长7段暗色泥页岩吸附特征及其影响因素[J]. 地学前缘, 2016, 23(1):146-153. Zhao Jingzhou, Wang Rui, Er Chuang. Adsorption Characteristics of Chang 7 Shale from the Triassic Yanchang Formation in Ordos Basin, and Its Controlling Factor[J]. Earth Science Frontiers, 2016, 23(1):146-153.
[14] 唐玄, 张金川, 丁文龙,等. 鄂尔多斯盆地东南部上古生界海陆过渡相页岩储集性与含气性[J]. 地学前缘, 2016, 23(2):147-157. Tang Xuan, Zhang Jinchuan, Ding Wenlong, et al. The Reservoir Property of the Upper Paleozoic Marine-Continental Transitional Shale and Its Gas Bearing Capacity in the Southeastern Ordos Basin[J]. Earth Science Frontiers, 2016, 23(2):147-157.
[15] 曾秋楠, 于炳松, 李昱霏. 鄂尔多斯盆地东南部延长组页岩储层特征及控制因素[J]. 特种油气藏, 2013, 20(1):23-26. Zeng Qiunan, Yu Bingsong, Li Yufei. Reservoir Characteristics and Their Controlling Factors of the Yanchang Formation Shale in Southeast of Ordos Basin[J]. Special Oil & Gas Reservoirs, 2013, 20(1):23-26.
[16] 吴建国, 刘大锰, 姚艳斌. 鄂尔多斯盆地渭北地区页岩纳米孔隙发育特征及其控制因素[J]. 石油与天然气地质, 2014, 35(4):542-550. Wu Jianguo, Liu Dameng, Yao Yanbin. Characteristics and Controlling Factors of Nanopores in Shales in Weibei, Ordos Basin[J]. Oil and Gas Geology, 2014, 35(4):542-550.
[17] 曾秋楠, 周新桂, 于炳松,等. 陆相页岩气储层评价标准探讨:以延长组富有机质页岩为例[J]. 新疆地质, 2015,33(3):409-414. Zeng Qiunan, Zhou Xingui, Yu Bingsong, et al. Evaluation Criteria of Lake Facies Shale Gas Reservoir:A Case Study of the Organic Rich Shale Developed in Yanchang Group, Ordos Basin[J]. Xinjiang Geology, 2015, 33(3):409-414.
[18] 邓军, 王庆飞, 黄定华,等. 鄂尔多斯盆地基底演化及其对盖层控制作用[J]. 地学前缘, 2005, 12(3):91-99. Deng Jun, Wang Qingfei, Huang Dinghua, et al. Basement Evolution of the Ordos Basin and Its Constraint on Cap Rock[J]. Earth Science Frontiers,2005, 12(3):91-99.
[19] 赵靖舟, 王力, 孙兵华,等. 鄂尔多斯盆地东部构造演化对上古生界大气田形成的控制作用[J]. 天然气地球科学, 2010, 21(6):875-881. Zhao Jingzhou, Wang Li, Sun Binghua, et al. Effect of Structural Evolution on the Formation and Distribution of Upper Paleozoic Giant Gas Fields in the East Ordos Basin[J]. Natural Gas Geoscience, 2010, 21(6):875-881.
[20] 杨华, 田景春, 王峰, 等. 鄂尔多斯盆地三叠纪延长组沉积期湖盆边界与底形及事件沉积研究[M]. 北京:地质出版社, 2009:90-144. Yang Hua, Tian Jingchuan, Wang Feng, et al. Research on Lacustrine Basin Boundary and Event Deposits of Triassic Yanchang Sedimentary Period in Ordos Basin[M]. Beijing:Geology Publishing House, 2009:90-144.
[21] 吉利明, 祝幼华. 鄂尔多斯盆地西南部甘肃西峰地区延长组孢粉组合及古气候研究[J]. 微体古生物学报, 2013, 30(4):367-378. Ji Liming, Zhu Youhua. Sporo-Polen Assemblages and Palenoclimate of the Yanchang Formation in the Xifeng Area, Southwestern Ordos Basin, Gansu Province, NW China[J]. Acta Micropalaeontologica Sinica, 2013, 30(4):367-378.
[22] 耳闯, 罗安湘, 赵靖舟,等. 鄂尔多斯盆地华池地区三叠系延长组长7段富有机质页岩岩相特征[J]. 地学前缘, 2016, 23(2):108-117. Er Chuang, Luo Anxiang, Zhao Jingzhou, et al. Lithofacies Features of Organic-Rich Shale of the Triassic Yanchang Formation in Huachi Aera, Ordos Basin[J]. Earth Science frontiers, 2016, 23(2):108-117.
[23] Brunauer S, Emmett P H, Teller E. Adsorption of Gases in Multimolecular Layers[J]. Journal of the American Chemical Society, 1938, 60(2):309-319.
[24] Kuila U, Prasad M. Specific Surface Area and Pore-Size Distribution in Clays and Shales[J]. Geophysical Prospecting, 2013, 61(2):341-362.
[25] ISO 9277:2010 Determination of the Specific Surface Area of Solids by Gas Adsorption:BET method[S]. Geneva:Technical Committee ISO/TC 24 and Subcommittee SC 4, 1995.
[26] Rouquerol J, Llewellyn P, Rouquerol F. Is the BET Equation Applicable to Microporous Adsorbents[J]. Studies in Surface Science & Catalysis, 2007, 160(7):49-56.
[27] Rouquerol F, Rouquerol J, Sing K. Adsorption by Powders and Porous Solids:Principles, Methodology and Applications[M]. Marseille:Academic Press, 2014.
[28] Brunauer S, Deming L S, Deming W E, et al. On a Theory of the Van der Waals Adsorption of Gases[J]. Journal of the American Chemical Society, 1940, 62(7):1723-1732.
[29] Slatt R M, O'Brien N R. Pore Types in the Barnett and Woodford Gas Shales:Contribution to Understanding Gas Storage and Migration Pathways in Fine-Grained Rocks[J]. Aapg Bulletin, 2011, 95(12):2017-2030.
[30] Turner J, Turner J. Zooplankton Fecal Pellets, Ma-rine Snow and Sinking Phytoplankton Blooms:Aquat Microbial Ecol[J]. Aquatic Microbial Ecology, 2002, 27(1):57-102.
[31] 于炳松. 页岩气储层孔隙分类与表征[J]. 地学前缘, 2013, 20(4):211-220. Yu Bingsong. Classification and Characterization of Gas Shale Pore System[J]. Earth Science frontiers, 2013, 20(4):211-220.
[32] 黄磊, 申维. 页岩气储层孔隙发育特征及主控因素分析:以上扬子地区龙马溪组为例[J]. 地学前缘, 2015, 22(1):374-385. Huang Lei, Shen Wei. Characteristics and Controlling Factors of the Formation of Pores of a Shale Gas Reservoir:A Case Study from Longmaxi Formation of the Upper Yangtze Region[J]. Earth Science frontiers, 2015, 22(1):374-385.
[33] Jarvie D. Evaluation of Hydrocarbon Generation and Storage in Barnett Shale, for Worth Basin, Texas[R]. Texas:Humble Geochemical Services Division, 2004.
[34] 魏祥峰, 刘若冰, 张廷山,等. 页岩气储层微观孔隙结构特征及发育控制因素:以川南-黔北XX地区龙马溪组为例[J]. 天然气地球科学, 2013, 24(5):1048-1059. Wei Xiangfeng, Liu Ruobing, Zhang Tingshan, et al. Micro-Pores Structure Characteristics and Development Control Factors of Shale Gas Reservoir:A Case of Longmaxi Formation in XX Area of Southern Sichuan and Northern Guizhou[J]. Natural Gas Geoscience, 2013, 24(5):1048-1059.
[35] Passey Q R, Bohacs K, Esch W L, et al. From Oil-Prone Source Rock to Gas-Producing Shale Reservoir:Geologic and Petrophysical Characterization of Unconventional Shale Gas Reservoirs[C]//CPS/SPE International Oil &Gas Conference and Exhibition. Beijing:[s. n.], 2010:131350.
[36] 黄振凯, 陈建平, 薛海涛,等. 松辽盆地白垩系青山口组泥页岩孔隙结构特征[J]. 石油勘探与开发, 2013, 40(1):58-65. Huang Zhenkai, Chen Jianping, Xue Haitao, et al. Microstructural Characteristics of the Cretaceous Qingshankou Formation Shale, Songliao Basin[J]. Petroleum Exploration and Development, 2013, 40(1):58-65.
[37] Gale J F W, Reed R M, Holder J. Natural Fractures in the Barnett Shale and Their Importance for Hydraulic Fracture Treatments[J]. Aapg Bulletin, 2007, 91(4):603-622.
[38] 何龙, 郑荣才, 梁西文,等. 川东涪陵地区大安寨段裂缝控制因素及期次分析[J]. 岩性油气藏, 2014, 26(4):88-96. He Long, Zheng Rongcai, Liang Xiwen, et al. Controlling Factors and Development Periods of Fracture of Da'anzhai Member in Fuling Area, Eastern Sichuan Basin[J]. Lithologic Reservoirs, 2014, 26(4):88-96.
[39] 刘伟新, 俞凌杰, 张文涛,等. 川东南龙马溪组页岩微观孔隙结构特征[J]. 海洋地质与第四纪地质, 2016,36(3):127-134. Liu Weixin, Yu Lingjie, Zhang Wentao, et al. Micro-Pore Structure of Longmaxi Shale from Southeast Sichuan Basin[J]. Marine Geology & Quaternary Geology, 2016, 36(3):127-134.
[40] 陈萍, 唐修义. 低温氮吸附法与煤中微孔隙特征的研究[J]. 煤炭学报, 2001, 26(5):552-556. Chen Ping, Tang Xiuyi. The Research on the Adsorption of Nitrogen in Low Temperature and Micro-Pore Properties in Coal[J]. Journal of China Coal Society, 2001, 26(5):552-556.
[41] 严继民,张启元.吸附与聚集[M].北京:科学出版社,1979:108-120. Yan Jimin, Zhang Qiyuan. Adsorption and Aggregation[M]. Beijing:Science Press, 1979:108-120.
[42] 杨潇, 姜振学, 宋岩,等. 渝东南牛蹄塘组与龙马溪组高演化海相页岩全孔径孔隙结构特征对比研究[J]. 高校地质学报, 2016, 22(2):368-377. Yang Xiao, Jiang Zhenxue, Song Yan, et al. A Comparative Study on Whole-Aperture Pore Structure Characteristics Between Niutitang and Longmaxi Formation of High-Matruity Marine Shales in Southeastern Chongqingelt[J]. Geological Journal of China Universities, 2016, 22(2):368-377.
[43] Kang S M, Fathi E, Ambrose R J, et al. Carbon Dioxide Storage Capacity of Organic-Rich Shales[J]. Spe Journal, 2013, 16(4):842-855.
[44] Ambrose R J, Hartman R C, Campos M D, et al. New Pore-Scale Considerations for Shale Gas in Place Calculations[C]//SPE Unconventional Gas Conference. Pittsburgh:Society of Petroleum Engineers, 2010:131772.
[45] 聂海宽, 边瑞康, 张培先,等. 川东南地区下古生界页岩储层微观类型与特征及其对含气量的影响[J]. 地学前缘, 2014, 21(4):331-343. Nie Haikuan, Bian Ruikang, Zhang Peixian, et al. Micro-Types and Characteristics of Shale Reservoir of the Lower Paleozoic in Southeast Sichuan Basin, and Their Effects on the Gas Content[J]. Earth Science Frontiers, 2014, 21(4):331-343.
[46] Loucks R G, Reed R M, Ruppel S C, et al. Mo-rphology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
[47] 耳闯, 赵靖舟, 王芮,等. 沉积环境对富有机质页岩分布的控制作用:以鄂尔多斯盆地三叠系延长组长7油层组为例[J]. 天然气地球科学, 2015, 26(5):823-832. Er Chuang, Zhao Jingzhou, Wang Rui, et al. Controlling Role of Sedimentary Environment on the Distribution of Organic-Rich Shale:A Case Study of the Chang7 Member of the Triassic Yanchang Formation, Ordos Basin[J]. Natural Gas Geoscience, 2015, 26(5):823-832.
[48] Schieber J. Common Themes in the Formation and Preservation of Porosity in Shales and Mudstones-Illustrated with Examples across the Phanerozoic[R]. Pittsburgh:SPE Unconventional Gas Conference, 2010.
[49] Jarvie D M, Jarvie B M, Weldon D, et al. Com-ponents and Processes Impacting Production Success from Unconventional Shale Resource Systems[C]//10th Middle East Geosciences Conference and Exhibition. Manama:[s. n.], 2012:40908.
[50] Curtis M E, Ambrose R J, Sondergeld C H, et al. Investigation of the Relationship Between Organic Porosity and Thermal Maturity in the Marcellus Shale[C]//North American Unconventional Gas Conference and Exhibition. Woodlands:Society of Petroleum Engineers, 2011:144370.
[51] 吴松涛, 朱如凯, 崔京钢,等. 鄂尔多斯盆地长7湖相泥页岩孔隙演化特征[J]. 石油勘探与开发, 2015, 42(2):167-176. Wu Songtao, Zhu Rukai, Hui Jinggang, et al. Characteristics of Lacustrine Shale Porosity Evolution, Triassic Chang 7 Member, Ordos Basin, NW China[J].Petroleum Exploration and Development, 2015, 42(2):167-176.
[52] Bustin R M. Shale Gas and Shale Oil Petrology and Petrophysics[J]. International Journal of Coal Geology, 2012, 103:1-2.
[53] Wang F P, Reed R M. Pore Networks and Fluid Flow in Gas Shales[C]//SPE Annual Technical Conference and Exhibition. New Orleans:Society of Petroleum Engineers, 2009:124253.
[54] Loucks R G, Reed R M, Ruppel S C, et al. Mor-phology, Genesis, and Distribution of Nanometer-Scale Pores in Siliceous Mudstones of the Mississippian Barnett Shale[J]. Journal of Sedimentary Research, 2009, 79(12):848-861.
[55] Sondergeld C H, Newsham K E, Comisky J T, et al. Petrophysical Considerations in Evaluating and Producing Shale Gas Resources[C]//SPE Unconventional Gas Conference. Pennsylvania:Society of Petroleum Engineers, 2010:131768.
[56] 梁峰, 拜文华, 邹才能,等. 渝东北地区巫溪2井页岩气富集模式及勘探意义[J]. 石油勘探与开发, 2016, 43(3):350-358. Liang Feng, Bai Wenhua, Zou Caineng, et al. Shale Gas Enrichment Pattern and Exploration Significance of Well Wuxi-2 in Northeast Chongqing, NE Sichuan Basin[J]. Petroleum Exploration and Development,2016, 43(3):350-358.
[57] Hickey J J, Bo H. Lithofacies Summary of the Mississippian Barnett Shale, Mitchell 2 TP Sims Well, Wise County, Texas[J]. Aapg Bulletin, 2007, 91(4):437-443.
[58] Thyberg B, Jahren J, Winje T, et al. From Mud to Shale:Rock Stiffening by Micro-Quartz Cementaton[J]. First Break, 2009, 22(10):170-173.
[59] 王茂桢, 柳少波, 任拥军,等. 页岩气储层黏土矿物孔隙特征及其甲烷吸附作用[J]. 地质论评, 2015, 61(1):207-216. Wang Maozhen, Liu Shaobo, Ren Yongjun, et al. Pore Characteristics and Methane Adsorption of Clay Minerals in Shale Gas Reservoir[J]. Geological Review, 2015, 61(1):207-216.
[60] 杨峰, 宁正福, 张世栋,等. 基于氮气吸附实验的页岩孔隙结构表征[J]. 天然气工业, 2013, 33(4):135-140. Yang Feng, Ning Zhengfu, Zhang Shidong, et al. Characterization of Pore Structures in Shales Through Nitrogen Adsorption Experiment[J]. Natural Gas Industry, 2013, 33(4):135-140.
[61] 黄振凯, 陈建平, 王义军,等. 松辽盆地白垩系青山口组泥岩微观孔隙特征[J]. 石油学报, 2013, 34(1):30-36. Huang Zhenkai, Chen Jianping, Wang Yijun, et al. Characteristics of Micropores in Mudstones of the Cretaceous Qingshankou Formation, Songliao Basin[J]. Acta Petrolei Sinica, 2013, 34(1):30-36.
[62] 吉利明, 马向贤, 夏燕青,等. 黏土矿物甲烷吸附性能与微孔隙体积关系[J]. 天然气地球科学, 2014, 25(2):141-152. Ji Liming, Ma Xiangxian, Xia Yanqing, et al. Relationship Between Methane Adsorption Capacity of Clay Minerals and Micropore Volume[J]. Natural Gas Geoscience, 2014, 25(2):141-152.
[63] 蒋裕强, 董大忠, 漆麟,等. 页岩气储层的基本特征及其评价[J]. 天然气工业, 2010, 30(10):7-12. Jiang Yuqiang, Dong Dazhong, Qi Lin, et al. Basic Features and Evaluation of Shale Reservoirs[J]. Natural Gas Industry, 2010, 30(10):7-12.
[64] Ross D J K, Bustin R M. The Importance of Shale Composition and Pore Structure upon Gas Storage Potential of Shale Gas Reservoirs[J]. Marine & Petroleum Geology, 2009, 26(6):916-927.
[65] Hill D G, Nelson C R. Reservoir Properties of the Upper Cretaceous Lewis Shale, a New Natural Gas Play in the San Juan Basin[J]. AAPG Bulletin, 2000, 84(8):1240.
[66] 张琴, 刘洪林, 拜文华,等. 渝东南地区龙马溪组页岩含气量及其主控因素分析[J]. 天然气工业, 2013,33(5):35-39. Zhang Qin, Liu Honglin, Bai Wenhua, et al. Shale Gas Content and Its Main Controlling Factors in Longmaxi Shales in Southeastern Chongqing[J]. Natural Gas Industry,2013, 33(5):35-39.
[67] 梁超, 姜在兴, 杨镱婷,等. 四川盆地五峰组-龙马溪组页岩岩相及储集空间特征[J]. 石油勘探与开发, 2012, 39(6):691-698. Liang Chao, Jiang Zaixing, Yang Yiting, et al. Characteristics of Shale Lithofacies and Reservoir Space of the Wufeng-Longmaxi Formation, Sichuan Basin[J]. Petroleum Exploration and Development, 2012, 39(6):691-698.
[1] 王玉霞, 周立发, 焦尊生, 尚庆华, 黄生旺. 鄂尔多斯盆地陕北地区延长组致密砂岩储层敏感性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 981-990.
[2] 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007.
[3] 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029.
[4] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[5] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[6] 刘海, 林承焰, 张宪国, 王宏伟, 付晓亮, 李佳. 孔店油田馆陶组辫状河储层构型及剩余油分布规律[J]. 吉林大学学报(地球科学版), 2018, 48(3): 665-677.
[7] 贾艳聪, 操应长, 林畅松, 王健. 东营凹陷博兴洼陷沙四上亚段滩坝优质储层形成机理与分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 652-664.
[8] 孙海涛, 钟大康, 李勇, 毛亚昆, 杨宪彰. 超深低孔特低渗砂岩储层的孔隙成因及控制因素——以库车坳陷克深地区巴什基奇克组为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 693-704.
[9] 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52.
[10] 蔡来星, 卢双舫, 肖国林, 王蛟, 吴志强, 郭兴伟, 侯方辉. 论优质源储耦合关系的控藏作用:对比松南致密油与松北致密气成藏条件[J]. 吉林大学学报(地球科学版), 2018, 48(1): 15-28.
[11] 刘宗利, 王祝文, 刘菁华, 赵淑琴, 欧伟明. 辽河东部凹陷火山岩相测井响应特征及储集意义[J]. 吉林大学学报(地球科学版), 2018, 48(1): 285-297.
[12] 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317.
[13] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[14] 蔡来星, 卢双舫, 张训华, 肖国林, 吴志强, 黄文彪. 基于孔喉结构建立致密砂岩储层评价方案——以松南中央坳陷泉四段为例[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1654-1667.
[15] 杨德相, 付广, 孙同文, 李熹微, 姜海燕, 刘滨莹. 油源断裂优势通道输导油气能力综合评价方法及其应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1678-1686.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!