吉林大学学报(地球科学版) ›› 2018, Vol. 48 ›› Issue (5): 1465-1472.doi: 10.13278/j.cnki.jjuese.20170198

• 地质工程与环境工程 • 上一篇    下一篇

某四氯化碳污染场地自然恢复的地球化学特征

丁一凡1, 郝光2, 刘本华3, 张子明1, 杨鑫鑫1, 刘明柱1   

  1. 1. 中国地质大学(北京)水资源与环境学院, 北京 100083;
    2. 云南省设计院集团勘察分院, 昆明 650223;
    3. 济南大学资源与环境学院, 济南 250022
  • 收稿日期:2018-01-29 发布日期:2018-11-20
  • 通讯作者: 刘明柱(1971-),男,副教授,博士,主要从事地下水模型与信息技术研究,E-mail:liumz@cugb.edu.cn E-mail:liumz@cugb.edu.cn
  • 作者简介:丁一凡(1993-),男,硕士研究生,主要从事地下水污染评价及修复研究,E-mail:yfding@cugb.edu.cn
  • 基金资助:
    国家自然科学基金项目(41572225)

Geochemical Characteristics of Natural Attenuation in a Carbon Tetrachloride Contaminated Site

Ding Yifan1, Hao Guang2, Liu Benhua3, Zhang Ziming1, Yang Xinxin1, Liu Mingzhu1   

  1. 1. School of Water Resources and Environment, China University of Geosciences, Beijing 100083, China;
    2. Yunnan Design Institute Group Survey Institute, Kunming 650223, China;
    3. School of Resources and Environment, University of Jinan, Jinan 250022, China
  • Received:2018-01-29 Published:2018-11-20
  • Supported by:
    Supported by National Natural Science Foundation of China(41572225)

摘要: 为了给某四氯化碳污染场地修复设计提供理论基础,在场地监测采样的基础上结合地球化学还原脱氯作用的反应过程,筛选了硫酸盐、二价铁、氯化物、三氯甲烷、碳酸氢盐作为标志性组分,开展了场地自然恢复的地球化学特征分析,划分对比了污染羽中部内外两区域各指标的质量浓度差异,结果显示:污染羽中部范围内标志性组分间具有明显的空间相关性,即反应物硫酸盐质量浓度明显降低,伴随了生成物二价铁所占比例的明显升高和降解产物氯离子与三氯甲烷质量浓度的升高,且显示了碳酸氢盐质量浓度的减少;上述指标之间的关系说明了四氯化碳脱氯作用的发生。本次地球化学特征分析显示出该污染场地具有较强的自然恢复潜势。

关键词: 地下水污染, 四氯化碳, 自然恢复, 还原脱氯作用

Abstract: In order to provide a theoretical basis for the treatment design of a carbon tetrachloride(CT) contaminated site in the northern China, based on the sampling work and the geochemical reductive dechlorination process, we selected sulfate, ferrous iron, chloridion, trichloromethane, and bicarbonate as the target components, and compared the differences of the mass concentration between the selected components in the central and the outer part of the CT plume to analyze the geochemical characteristics of natural restoration of the site. The results show that there is a clear spatial correlation among the aforementioned components in the central part of the pollution plume. That is, the mass concentration of the reactant sulfate decreased obviously with the significant increases of the proportion of the product's divalent iron and the concentration of the degradation product chloride ion and chloroform correspondingly. Chloridion and trichloromethane, as dechlorination products, rise considerably with the decrease of bicarbonate. The relationship described above indicates the occurrence of the degradation of CT. The analysis of geochemical characteristics demonstrates that the site has an appreciable natural attenuation potential.

Key words: groundwater contamination, carbon tetrachloride, natural attenuation, reductive dechlorination

中图分类号: 

  • P641.3
[1] Kennedy L G, Everett J W, Becvar E, et al. Field-Scale Demonstration of Induced Biogeochemical Reductive Dechlorination at Dover Air Force Base, Dover, Delaware[J]. Journal of Contaminant Hydrology, 2006, 88(1/2):119-136.
[2] 梁峙,韩宝平,肖扬,等. 四氯化碳在包气带的迁移机理及动态降解[J]. 工业安全与环保, 2015,41(1):88-91. Liang Zhi, Han Baoping, Xiao Yang, et al. Migration Mechanism and Dynamic Biodegradation of Carbon Tetrachloride in Unsaturated Zone[J]. Industrial Safety and Environmental Protection, 2015, 41(1):88-91.
[3] 刘娜,梁刚,董新维,等. 酪氨酸酶固定化碳材料对苯酚的生物降解性能[J]. 吉林大学学报(地球科学版), 2017, 47(2):573-579. Liu Na, Liang Gang, Dong Xinwei, et al. Biodegradation Property of Phenol Using the Immobilized Tyrosinase on Carbon Material[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(2):573-579.
[4] 钟佐燊. 地下水有机污染控制及就地恢复技术研究进展二[J]. 水文地质工程地质, 2001(4):26-31. Zhong Zuoshen. The Organic Pollution Control of Groundwater and the In-Situ Recovery Technology Research Progress[J]. Hydrogeology and Engineering Geology, 2001(4):26-31.
[5] 李烨,潘涛,刘菲,等. 四氯乙烯在不同地下水环境的生物共代谢降解[J]. 岩矿测试, 2012, 31(4):682-688. Li Ye, Pan Tao, Liu Fei, et al.Co-Metabolism Biodegradation of Tetrachloroethylene Under Different Groundwater Conditions[J]. Rock and Mineral Analysis, 2012, 31(4):682-688.
[6] Bunge M, Kleikemper J, Miniaci C, et al. Benzoate-Driven Dehalogenation of Chlorinated Ethenes in Microbial Cultures from a Contaminated Aquifer[J]. Applied Microbiology and Biotechnology, 2007, 76(6):1447-1456.
[7] 张凤君,贾晗,刘佳露,等. 有机氯代烃在壤土中的吸附和解吸特性[J]. 吉林大学学报(地球科学版), 2015, 45(5):1515-1522. Zhang Fengjun, Jia Han, Liu Jialu, et al. Sorption and Desorption of Chlorination Hydrocarbons onto Loam Soil[J]. Journal of Jilin University(Earth Science Edition), 2015,45(5):1515-1522.
[8] Kennedy L G, Everett J W, Gonzales J. Assessment of Biogeochemical Natural Attenuation and Treatment of Chlorinated Solvents, Altus Air Force Base, Altus, Oklahoma[J]. Journal Of Contaminant Hydrology, 2006, 83(3/4):221-236.
[9] 宋志伟,李婷,易宏云,等. 好氧颗粒污泥对有机污染物的吸附机制[J]. 吉林大学学报(地球科学版), 2017, 47(3):868-873. Song Zhiwei, Li Ting, Yi Hongyun, et al.Adsorption Mechanism of Aerobic Granular Sludge to Organic Pollutants[J]. Journal of Jilin University(Earth Science Edition), 2017,47(3):868-873.
[10] Lee M D, Odom J M, Buchanan R J. New Pers-pectives on Microbial Dehalogenation of Chlorinated Solvents:Insights from the Field[J]. Annual Review of Microbiology, 1998, 52:423-452.
[11] 单爱琴,郝红艳,韩宝平,等. 四氯化碳浓度对其自身厌氧生物降解的影响[J]. 环境科学与技术, 2008, 31(1):1-4. Shan Aiqin, Hao Hongyan, Han Baoping, et al. Impact of Carbon Tetrachloride Concentration on Its Own Anaerobic Biodegradation[J]. Environmental Science & Technology, 2008, 31(1):1-4.
[12] Shao Hongbo,Butler E C. The Relative Importance of Abiotic and Biotic Transformation of Carbon Tetrachloride in Anaerobic Soils and Sediments[J]. Soil and Sediment Contamination, 2009, 18:455-469.
[13] Shao Hongbo, Butler E C. Influence of Soil Minerals on the Rates and Products of Abiotic Transformation of Carbon Tetrachloride in Anaerobic Soils and Sediments[J]. Environment Science and Technology, 2009, 43:1896-1901.
[14] 场地环境检测技术导则HJ 25.2-2014[S].北京:中国环境科学出版社,2014. Technical Guidelines for Environmental Site Monitoring HJ 25.2-2014[S].Beijing:China Environmental Science Press, 2014.
[15] 沉积岩中黏土矿物和常见非黏土矿物X射线衍射分析方法SY/T5163-2010[S].北京:石油工业出版社,2010. Analysis Method for Clay Minerals and Ordinary Non-Clay Minerals in Sedimentary Rocks by the X-Ray Diffraction SY/T5163-2010[S]. Beijing:Petroleum Industry Press, 2010.
[16] 铁矿石化学分析方法三氯化铁-乙酸钠容量法测定金属铁量GB 6730.6-1986[S].北京:中国标准出版社,1986. Methods for Chemical Analysis of Iron Ores:The Ferric Chloride-Sodium Acetate Volumetric Method for the Determination of Metallic Iron Content GB 6730.6-1986[S]. Beijing:Standards Press of China, 1986.
[17] 铁矿石化学分析方法重铬酸钾容量法测定亚铁量GB 6730.8-1986[S].北京:中国标准出版社,1986. Methods for Chemical Analysis of Iron Ores:The Potassium Dichromate Volumetric Method for the Determination of Iron(2) Content GB 6730.8-1986[S]. Beijing:Standards Press of China, 1986.
[18] 水处理剂铁含量测定方法通则GB/T 22596-2008[S].北京:中国标准出版社,2008. Water Treatment Chemicals-General Method for Determination of Iron Content GB/T 22596-2008[S]. Beijing:Standards Press of China, 2008.
[19] 土壤有机碳的测定重铬酸钾氧化-分光光度法HJ 615-2011[S].北京:中国环境科学出版社,2011. Soil-Determination of Organic Carbon-Potassium Dichromate Oxidation Spectrophotometric Method HJ 615-2011[S]. Beijing:China Environmental Science Press, 2011.
[20] 地下水环境监测技术规范HJ/T 164-2004[S].北京:中国环境科学出版社,2004. Technical Specifications for Environmental Monitoring of Groundwater HJ/T 164-2004[S]. Beijing:China Environmental Science Press, 2004.
[21] 生活饮用水标准检验方法感官性状和物理指标GB/T 5750.4-2006[S].北京:中国环境科学出版社,2006. Standard Examination Methods for Drinking Water Organoleptic and Physical Parameters GB/T 5750.4-2006[S]. Beijing:China Environmental Science Press, 2006.
[22] Butler E C, Chen L, Darlington R. Transformation of Trichloroethylene to Predominantly Non-Regulated Products Under Stimulated Sulfate Reducing Conditions[J]. Ground Water Monitoring And Remediation, 2013, 33(3):52-60.
[23] 刘娜,丁吉阳,于庆民,等. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J/OL]. 吉林大学学报(地球科学版), (2017-05-09)[2017-06-27] http://www.cnki.net/kcms/detail/22.1343.P.20170509.0907.002.html? Liu Na, Ding Jiyang, Yu Qingmin, et al. Degradation of 1,4-Dioxane in Groundwater with Ultrasound Enhanced ZVI-Activated Persulfate Oxidation Process[J/OL]. Journal of Jilin University(Earth Science Edition), (2017-05-09)[2017-06-27] http://www.cnki.net/kcms/detail/22.1343.P.20170509.0907.002.html?
[24] Chen C, Puhakka J A, Ferguson J F. Transforma-tions of 1,1,2,2-Tetrachloroethane Under Methanogenic Conditions[J]. Environmental Science & Technology, 1996, 30(2):542-547.
[25] Hanoch R, Shao H, Butler E C. Transformation of Carbon Tetrachloride by Bisulfide Treated Goethite, Hematite, Magnetite, and Kaolinite[J]. Chemosphere, 2006, 63(2):323-334.
[26] He Y T, Wilson J T, Su C, et al. Review of Abiotic Degradation of Chlorinated Solvents by Reactive Iron Minerals in Aquifers[J]. Ground Water Monitoring And Remediation, 2015, 35(3):57-75.
[27] Assaf-Anid N, Lin K Y. Carbon Tetrachloride Reduc-tion by Fe2+, S2-, and FeS with Vitamin B-12 as Organic Amendment[J]. Journal of Environmental Engineering-Asce, 2002, 128(1):94-99.
[28] Kenneke J F, Weber E J. Reductive Dehalogenation of Halomethanes in Iron-and Sulfate-Reducing Sediments:1:Reactivity Pattern Analysis[J]. Environmental Science & Technology, 2003, 37(4):713-720.
[29] Lee W, Batchelor B. Abiotic Reductive Dechlorination of Chlorinated Ethylenes by Iron-Bearing Soil Minerals:1:Pyrite and Magnetite[J]. Environmental Science & Technology, 2002, 36(23):5147-5154.
[30] Lan Y, Butler E C. Iron-Sulfide-Associated Products Formed During Reductive Dechlorination of Carbon Tetrachloride[J]. Environmental Science & Technology, 2016, 50(11):5489-5497.
[1] 罗建男,卢文喜,康柱,宋晶,张一博. 表面活性剂强化含水层修复过程的全局灵敏度[J]. 吉林大学学报(地球科学版), 2013, 43(2): 558-0563.
[2] 赵勇胜. 地下水污染场地风险管理与修复技术筛选[J]. J4, 2012, 42(5): 1426-1433.
[3] 苏小四, 吕航, 张文静, 张玉玲, 焦珣. 某石油污染场地地下水石油烃生物降解的13C、34S同位素证据[J]. J4, 2011, 41(3): 847-854.
[4] 李绪谦,潘晓峰,孙大志,商书波,李红艳,付向明,林景玉. 辽宁张士灌区细河流域地下水污染物空间分布特征及污染源判别分析[J]. J4, 2007, 37(4): 767-0772.
[5] 杨悦所,Wang John L. 基于GIS的农业面源硝酸盐地下水污染动态风险评价[J]. J4, 2007, 37(2): 311-318.
[6] 赵 勇 胜. 地下水污染场地污染的控制与修复[J]. J4, 2007, 37(2): 303-310.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!