吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 797-806.doi: 10.13278/j.cnki.jjuese.20170309
樊冬艳1, 孙海1, 姚军1, 李华锋2, 严侠1, 张凯1, 张林1
Fan Dongyan1, Sun Hai1, Yao Jun1, Li Huafeng2, Yan Xia1, Zhang Kai1, Zhang Lin1
摘要: 针对增强型地热系统中水通过复杂裂缝系统提取干热岩储层热量的过程,基于离散裂缝网络模型热流耦合构建了增强型地热系统的解析模型,利用Laplace变换得到了干热岩储层解析解,分析了在五点井网开采下注采井网参数对出口端温度及热提取的影响。研究结果表明:不同裂缝网络和井网模型下出口端温度下降幅度和热突破的时间不同;在相同裂缝网络下,井距越大,热突破时间越晚,当井距分别为50.0、100.0和150.0 m时,热突破时间分别为2.0、5.2和15.0 a;注水速率越小,温度下降越慢,当注水速率分别为0.1,0.2和0.3 kg/s时,生产20.0 a,温度下降幅度分别为53.0,34.5和26.8℃;通过正交实验分析方法得到注采参数中井距影响最大,其极差为13.15,其次为注水速率和注水温度,井网模型影响最小。
中图分类号:
[1] Tester J, Anderson B, Batchelor A, et al. The Future of Geothermal Energy:Impact Geothermal System (EGS) on the United States in the 21st Century[R]. Cambridge:Massachusetts Institute of Technology, 2006. [2] 许天福, 袁益龙, 姜振蛟, 等. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4):1139-1152. Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, et al. Hot Dry Rock and Enhanced Geothermal Engineering:International Experience and China Prospect[J]. Journal of Jilin University(Earth Science Edition), 2016,46(4):1139-1152. [3] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012,30(32):25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China[J]. Science & Technology Review, 2012, 30(32):25-31. [4] Hori Y, Kitano K, Kaieda H, et al. Present Status of the Ogachi HDR Project, Japan, and Future Plans[J]. Geothermics,1999, 28(4):637-645. [5] Zeng Yuchao, Zhan Jiemin, Wu Nengyou, et al. Numerical Simulation of Electricity Generation Potential from Fractured Granite Reservoir Through Vertical Well at Yangbajing Geothermal Field[J]. Energy, 130:290-304. [6] Gelet R, Loret B, Khalili N.A Thermos-Hydro-Mechanical Coupled Model in Local Thermal Non-Equilibrium for Fractured HDR Reservoir with Double Porosity[J]. Journal of Geophysical Research, 2012, 117:1-23. [7] Gan Q, Elsworth D. Production Optimization in Fractured Geothermal Reservoirs Coupled Discrete Fracture Network Modeling[J]. Geothermics, 2016, 62:131-142. [8] Maffucci R, Bigi S, Corrado S, et al. Quality Assessment of Reservoirs by Means of Outcrop Data and "Discrete Fracture Network" Models:The Case History of Rosario De La Frontera (NW Argentina) Geothermal System[J]. Tectonophysics, 2015, 647:112-131. [9] 孙致学, 徐轶, 吕抒桓, 等. 增强型地热系统热流固耦合模型及数值模拟[J]. 中国石油大学学报(自然科学版), 2016, 40(6):109-117. Sun Zhixue, Xu Yi, Lü Shuhuan, et al. A Thermo-Hydro-Mechanical Coupling Model for Numerical Simulation of Enhanced Geothermal Systems[J]. Journal of China University of Petroleum (Natural Science), 2016, 40(6):109-117. [10] Cao Wenjiong,Huang Wenbo, Jiang Fangming. A Novel Thermal-Hydraulic-Mechanical Model for the Enhanced Geothermal System Heat Extraction[J]. International Journal of Heat and Mass Transfer, 2016, 100:661-671. [11] 雷宏武, 金光荣, 李佳琦, 等. 松辽盆地增强型地热系统(EGS)地热能开发热-水动力耦合过程[J]. 吉林大学学报(地球科学版), 2014, 44(5):1633-1646. Lei Hongwu, Jin Guangrong, Li Jiaqi, et al. Coupled Thermal-Hydrodynamic Processes for Geothermal Energy Exploitation in Enhanced Geothermal System at Songliao Basin, China[J]. Journal of Jilin University(Earth Science Edition), 2014,44(5):1633-1646. [12] Sun Zhixue, Zhang Xu, Xu Yi, et al. Numerical Simulation of the Heat Extraction in EGS with Thermal-Hydraulic-Mechanical Coupling Method Based on Discrete Fractures Model[J]. Energy, 2017, 120:20-33. [13] Norbert B, Norihiro W, Gorke U, et al. Geoenergy Modeling I:Geothermal Processs in Fractured Porous Media[M]. Cham:Springer International Publishing, 2016. [14] Norihiro W, Guido B, Mauro C, et al. Geoenergy Modeling Ⅲ:Enhanced Geothermal Systems[M]. Cham:Springer International Publishing, 2016. [15] Brian B. Characterizing Flow and Transport in Fractured Geological Media:A Review[J]. Advances in Water Resources, 2002, 25:861-884. [16] Fu Pengcheng, Scott M J, Carrigan R C. An Explicitly Coupled Hydro-Geomechanical Model for Simulating Hydraulic Fracturing in Arbitrary Discrete Fracture Networks[J]. Int J Numer Anal Meth Geomech, 2013; 37:2278-2300. [17] 朱家玲, 张国伟, 李君, 等. 裂隙通道内流固换热系数解析解及敏感性分析[J]. 太阳能学报, 2016, 37(8):2019-2025. Zhu Jialing, Zhang Guowei, Li Jun, et al. Analytical Solution and Sensitivity Analysis of Fluid-Solid Heat Transfer Coefficient in Fracture Channel[J]. Acta Energiae Solaris Sinica, 2016, 37(8):2019-2025. [18] 同登科, 陈钦雷. 关于Laplace数值反演Stehfest方法的一点注记[J]. 石油学报, 2001, 22(6):91-92. Tong Dengke, Chen Qinlei. A Note on the Laplace Numerical Inversion Stehfest Method[J]. Acta Petrolei Sinica, 2001, 22(6):91-92. [19] Wagner W, Cooper J R, Dittmann A, et al. The IAPWS Industrial Formulation 1997 for the Thermodynamic Properties of Water and Steam[J]. Journal of Engineering for Gas Turbines and Power, 2000, 122(1):150-182. [20] Zeng Yuchao, Wu Nengyou, Su Zheng, et al. Numerical Simulation of Heat Production Potential from Hot Dry Rock by Water Circulating Through a Novel Single Vertical Fracture at Desert Peak Geothermal Field[J]. Energy, 2013, 63:268-282. |
[1] | 吴云霞, 吕凤军, 邢立新, 刘新星. 独山城地区多元信息干热岩预测模型[J]. 吉林大学学报(地球科学版), 2019, 49(3): 880-892. |
[2] | 高科, 高红通, 谭现锋, 赵长亮, 李梦. 仿生异型齿钻头在干热岩钻探中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1804-1809. |
[3] | 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572. |
[4] | 许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波. 干热岩资源和增强型地热工程:国际经验和我国展望[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1139-1152. |
[5] | 郭亮亮, 张延军, 许天福, 金显鹏. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版), 2016, 46(2): 525-535. |
[6] | 李小林, 吴国禄, 雷玉德, 李重阳, 赵继昌, 白银国, 曾昭发, 赵振, 张珊珊, 赵爱军. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1): 220-229. |
[7] | 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501. |
[8] | 曹文炅, 陈继良, 蒋方明. 工质变物性对EGS热开采过程影响的数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1180-1188. |
[9] | 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197. |
[10] | 吴志伟,宋汉周. 由温度时序资料反演地下水流速的两种解析解及其比较[J]. 吉林大学学报(地球科学版), 2014, 44(2): 610-618. |
|