吉林大学学报(地球科学版) ›› 2016, Vol. 46 ›› Issue (4): 1139-1152.doi: 10.13278/j.cnki.jjuese.201604201

• 地质工程与环境工程 • 上一篇    下一篇

干热岩资源和增强型地热工程:国际经验和我国展望

许天福, 袁益龙, 姜振蛟, 侯兆云, 冯波   

  1. 吉林大学地下水资源与环境教育部重点实验室, 长春 130021
  • 收稿日期:2015-10-15 发布日期:2016-07-26
  • 通讯作者: 冯波(1982),男,副教授,博士,主要从事干热岩储层改造及资源评价方面的研究,E-mail:fengbo82@126.com E-mail:fengbo82@126.com
  • 作者简介:许天福(1962),男,教授,博士生导师,国家"千人计划"特聘专家,主要从事多相流反应溶质运移和EGS方面的研究,E-mail:tianfu_xu@jlu.edu.cn
  • 基金资助:

    国家自然科学基金项目(41572215);国家自然科学基金青年基金项目(41402205);吉林省科技厅项目(20140520179JH)

Hot Dry Rock and Enhanced Geothermal Engineering: International Experience and China Prospect

Xu Tianfu, Yuan Yilong, Jiang Zhenjiao, Hou Zhaoyun, Feng Bo   

  1. Key Laboratory of Groundwater Resources and Environment, Ministry of Education, Jilin University, Changchun 130021, China
  • Received:2015-10-15 Published:2016-07-26
  • Supported by:

    Supported by National Natural Science Foundation of China (41572215), National Natural Science Foundation of China Youth Fund Project (41402205) and Project of Science and Technology Department of Jilin Province (20140520179JH)

摘要:

干热岩(HDR)是一种没有水或含有少量水的高温岩体,保守估计地壳中3~10 km深处干热岩所蕴含的能量相当于全球所有石油、天然气和煤炭所蕴藏能量的30倍。增强型地热系统(EGS)是指通过水力压裂等工程手段在地下深部低渗透性干热岩体中形成人工地热储层,采出相当数量热能的人工地热系统。EGS的研究与开发已有40年的历史,但早期只局限在美国、英国、法国、日本、澳大利亚等国家,我国这方面的研究于近几年起步。目前干热岩的开发面临诸多挑战,如大体积人工裂隙热储的建造、实现EGS商业化需要进一步研究和技术开发等。本文回顾分析了国际上重要EGS示范场地建设和研究过程中所取得的经验和积累的教训,讨论了我国近几年的研究进展,希望为我国今后EGS研究和工程化示范提供参考和借鉴。

关键词: 干热岩, 增强型地热系统, 水力压裂, 热储建造, 示范场地

Abstract:

Hot dry rock (HDR) is a kind of high temperature rock in depth without or with a small amount of water. A conservative estimation of the HDR thermal energy in the earth's crust (depth of 3-10 km) is equivalent to the 30 times of the total energy contained in the oil, gas and coal all over the world. Enhanced geothermal system (EGS) is an engineered reservoirs that has been created to extract economical amounts of heat from low permeability and/or porosity geothermal resources. The history of study and development of EGS has been about 40 years, but only a small number of countries in the world have conducted EGS research and demonstration, such as the United States, Britain, France, Japan, Australia, etc. In recent years, we have started the research and development. Currently, the exploitation of HDR faces many challenges, such as the creation of the massive artificial fractured thermal reservoir, and implementing EGS commercialization needs further research and technological development. This paper reviewed the experiences and lessons learned from international typical EGS demonstration projects, and discussed the research progress of China in recent years. The purpose of the paper is to offer reference for future scientific research and field demonstration of the EGS in China.

Key words: hot dry rock, enhanced geothermal system, hydraulic fracturing, thermal reservoir creation, field demonstration

中图分类号: 

  • P314

[1] 汪集旸, 胡圣标, 庞忠和, 等. 中国大陆干热岩地热资源潜力评估[J]. 科技导报, 2012, 30(32): 25-31. Wang Jiyang, Hu Shengbiao, Pang Zhonghe, et al. Estimate of Geothermal Resources Potential for Hot Dry Rock in the Continental Area of China[J]. Science & Technology Review, 2012, 30(32): 25-31.

[2] 康玲, 王时龙, 李川. 增强型地热系统(EGS)的人工热储技术[J]. 地热能, 2009(2):13-16. Kang Ling, Wang Shilong, Li Chuan. Reservoir Technology in EGS[J]. Geothermal Energy, 2009(2): 13-16.

[3] Tester J W, Anderson B J, Batchelor A S, et al. The Future of Geothermal Energy-Impact of Enhanced Geothermal Systems (EGS) on the United States in the 21st Century[R]. Boston: Massachusetts Institute of Technology, 2006.

[4] 许天福,张延军, 曾昭发, 等. 增强型地热系统(干热岩)开发技术进展[J]. 科技导报, 2012, 30(32): 42-45. Xu Tianfu, Zhang Yanjun, Zeng Zhaofa, et al. Technology Progress in an Enhanced Geothermal System (Hot Dry Rock)[J]. Science & Technology Review, 2012, 30(32): 42-45.

[5] 蔺文静, 刘志明, 马峰, 等. 我国陆区干热岩资源潜力估算[J]. 地球学报, 2012, 33(5): 807-811. Lin Wenjing, Liu Zhiming, Ma Feng, et al. An Estimation of HDR Resources in China's Mainland[J]. Acta Geoscientica Sinica, 2012, 33(5): 807-811.

[6] 张建英. 增强型地热系统(EGS)资源开发利用研究[J]. 中国能源, 2011, 33(1):29-32. Zhang Jianying. Research on Developing Enhanced Geothermal System Resource[J]. Energy of China, 2011, 33(1):29-32.

[7] Zimmermann G, Reinicke A. Hydraulic Stimulation of a Deep Sandstone Reservoir to Develop an Enhanced Geothermal System: Laboratory and Field Experiments[J]. Geothermics, 2010, 39(1): 70-77.

[8] Portier S, Vuataz F D, Nami P, et al. Chemical Stimulation Techniques for Geothermal Wells: Experiments on the Three-Well EGS System at Soultz-Sous-Forêts, France[J]. Geothermics, 2009, 38(4): 349-359.

[9] Bradford J, Ohren M, Osborn W L, et al. Thermal Stimulation and Injectivity Testing at Raft River, ID EGS Site[C]//Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2014.

[10] Pine R J, Batchelor A S. Downward Migration of Shearing in Jointed Rock During Hydraulic Injections[J]. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 1984, 21(5): 249-263.

[11] Brown D W. Hot Dry Rock Geothermal Energy: Important Lessons from Fenton Hill[C]//Proceedings, Thirty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2009.

[12] Ziagos J, Phillips B R, Boyd L, et al. A Technology Roadmap for Strategic Development of Enhanced Geothermal System[C]//Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.

[13] Tester J W, Albright J N. Hot Dry Rock Energy Extraction Field Test: 75 Days of Operation of a Prototype Reservoir at Fenton Hill, Segment 2 of Phase I[R]. Stanford: Los Alamos Scientific Laboratory, 1979.

[14] Whetten J T, Dennis B R, Dreesen D S, et al. The U S Hot Dry Rock Project[J]. Geothermics, 1987, 16(4): 331-339.

[15] Batchelor A S, Baria R, Hearn K. Monitoring the Effects of Hydraulic Stimulation by Microseismic Event Location: A Case Study[C]//Proceedings, SPE Annual Technical Conference and Exhibition. San Francisco: Society of Petroleum Engineers, 1983.

[16] Kolditz O, Clauser C. Numerical Simulation of Flow and Heat Transfer in Fractured Crystalline Rocks: Application to the Hot Dry Rock site in Rosemanowes (U.K.)[J]. Geothermics, 1998, 27(1): 1-23.

[17] Richards H G. Granite-Water Reactions in an Experimental Hot Dry Rock Geothermal Reservoir, Rosemanowes Test Site, Cornwall, U K[J]. Applied Geochemistry, 1992, 7(3): 193-222.

[18] Genter A,Evans K,Cuenot N,et al. Contribution of the Exploration of Deep Crystalline Fractured Reservoir of Soultz to the Knowledge of Enhanced Geothermal Systems (EGS)[J]. Comptes Rendus Geoscience, 2010, 342: 502-516.

[19] Baria R, Michelet S, Baumgaertner J, et al. Microseismic Monitoring of the World's Largest Potential HDR Reservoir[C]//Proceedings, Twenty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2004.

[20] Valley B, Dezayes C, Genter A. Multi-Scale Fracturing in the Soultz-Sous-Forêsts Basement from Borehole Images Analyses[C]//Proceedings, Soultz Scientific Meeting. Orleans: Geothermal Energy Division, 2007.

[21] Schindler M, Nami P, Schellschmidt, et al. Correlation of Hydraulic and Seismic Observations During Stimulation Experiments in the 5 km Deep Crystalline Reservoir at Soultz[C]//EHDRA Soultz Scientific Meeting. Soultz: [s. n.], 2008.

[22] Tenma N, Yamaguchi T, Zyvoloski G. The Hijiori Hot Dry Rock Test Site, Japan: Evaluation and Optimization of Heat Extraction from a Two-Layered Reservoir[J]. Geothermics, 2008, 37: 19-52.

[23] Tenma N, Yamaguchi T, Oikawa Y, Zyvoloski G. Comparison of the Deep and the Shallow Reservoirs at the Hijiori HDR Test Site Using FEHM Code[C]//Proceedings, Twenty-Sixth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2001.

[24] Swenson D, Schroeder R, Shinohara N, et al. Analyses of the Hijiori Long Term Circulation Test[C]//Proceedings, Twenty-Fourth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 1999.

[25] Yamaguchi S, Akibayashi S, Rokugawa S, et al. The Numerical Modeling Study of the Hijiori HDR Test Site[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku: Akita University, 2000.

[26] Kaieda H, Ito H, Kiho K, et al. Review of the Ogachi HDR Project in Japan[C]//Proceedings, World Geothermal Congress. Antalya:[s.n.] , 2005.

[27] Kitano K, Hori Y, Kaieda H. Outrline of the Ogachi HDR Project and Character of the Reservoirs[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku:Central Research Institute of Electric Power Industry, 2000.

[28] Kaieda H, Jones R H, Moriya H, et al. Ogachi HDR Reservoir Evaluation by AE and Geophysical Methods[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku:Central Research Institute of Electric Power Industry, 2000.

[29] Shin K, Ito H, Oikawa Y. Stress State at the Ogachi Site[C]//Proceedings, World Geothermal Congress. Kyushu-Tohoku:Central Research Institute of Electric Power Industry, 2000.

[30] Wyborn D. Update of Development of the Geothermal Field in the Granite at Innamincka, South Australia[C]//Proceedings, World Geothermal Congress. Bali:Geodynamics Limited, 2010.

[31] Wyborn D, Graaf L D, Hann S. Enhanced Geothermal Development in the Cooper Basin Area, South Australia[J]. GRC Transactions, 2005, 29: 151-156.

[32] Faulds J E, Coolbaugh M F, Benoit D, et al. Structural Control of Geothermal Activity in the Northern Hot Springs Mountains, Western Nevada: The Tale of Three Geothermal Systems (Brady's, Desert Peak and Desert Queen)[J]. GRC Transactions, 2010, 34: 675-683.

[33] Zemach E, Drakos P, Robertson-Tait A. Feasibility Evaluation of an "In-Field" EGS Project at Desert Peak, Nevada[J]. GRC Transactions, 2009, 33: 285-295.

[34] Chabora E, Zenach E, Spielman P, et al. Hydraulic Stimulation of Well 27-15, Desert Peak Geothermal Field, Nevada, USA[C]//Proceedings, Thirty-Seventh Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2012.

[35] Rutqvist J, Dobson P F, Garcia J, et al. The Northwest Geysers EGS Demonstration Project, California: Pre-Stimulation Modeling and Interpretation of the Stimulation[J]. Mathematical Geosciences, 2015, 47(1): 3-29.

[36] Rinaldi A P, Rutqvist J, Sonnenthal E L, et al. Coupled THM Modeling of Hydroshearing Stimulation in Tight Fractured Volcanic Rock[J]. Transport in Porous Media, 2015, 108: 131-150.

[37] Plummer M, Palmer C, Podgorney R, et al. Hydraulic Response to Thermal Stimulation Efforts at Raft River Based on Stepped Rate Injection Testing[C]//Proceedings, Thirty-Ninth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2014.

[38] Bradford J, McLennan J, Moore J, et al. Recent Developments at the Raft River Geothermal Field[C]//Proceedings, Thirty-Eighth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2013.

[39] Plummer M, Huang H, Podgorney R, et al. Reservoir Response to Thermal and High-Pressure Well Stimulation Efforts at Raft River, Idaho[C]//Proceedings, Fortieth Workshop on Geothermal Reservoir Engineering. Stanford: Stanford University, 2015.

[1] 鲍新华, 张宇, 李野, 吴永东, 马丹, 周广慧. 松辽盆地增强型地热系统开发选区评价[J]. 吉林大学学报(地球科学版), 2017, 47(2): 564-572.
[2] 郭亮亮, 张延军, 许天福, 金显鹏. 大庆徐家围子不同储层改造的干热岩潜力评估[J]. 吉林大学学报(地球科学版), 2016, 46(2): 525-535.
[3] 李小林, 吴国禄, 雷玉德, 李重阳, 赵继昌, 白银国, 曾昭发, 赵振, 张珊珊, 赵爱军. 青海省贵德扎仓寺地热成因机理及开发利用建议[J]. 吉林大学学报(地球科学版), 2016, 46(1): 220-229.
[4] 那金, 许天福, 魏铭聪, 冯波, 鲍新华, 姜雪. 增强地热系统热储层-盐水-CO2相互作用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1493-1501.
[5] 李正伟, 张延军, 郭亮亮, 金显鹏. 松辽盆地北部干热岩开发水热产出预测[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1189-1197.
[6] 曹文炅, 陈继良, 蒋方明. 工质变物性对EGS热开采过程影响的数值模拟[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1180-1188.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!