吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 839-847.doi: 10.13278/j.cnki.jjuese.201703204
张泽1, 周泓2,3, 秦琦3,4, 邴慧1, 武俊杰1, 周攀峰5
Zhang Ze1, Zhou Hong2,3, Qin Qi3,4, Bing Hui1, Wu Junjie1, Zhou Panfeng5
摘要: 为得到冻融循环后黄土孔隙分布的变化规律,以重塑黄土为研究对象,采用压汞法对历经不同冻融循环次数后黄土的孔隙特征进行研究。试验结果表明:冻融作用使土样内部颗粒发生重新排列连结,孔隙结构发生改变,孔隙分布逐步向小孔隙数量减少、大孔隙数量增多方向推进;冻融前10次过程中,孔隙分布变化不稳定,但随着冻融循环次数增加,趋势逐渐明朗,表现为0.01~0.10 μm范围内的超微孔隙数量减少,而5.00~10.00 μm范围内的细微孔隙数量增多;孔隙率也随冻融次数增加先增大,在冻融第8次时达到最大,其后减小,50次后逐渐趋于稳定。根据试验结果,结合孔隙分形进行分析,认为孔隙结构在冻融循环作用下,不均匀性及复杂程度降低。
中图分类号:
[1] 方丽莉, 齐吉琳, 马巍. 冻融作用对土结构性的影响及其导致的强度变化[J]. 冰川冻土, 2012, 34(2): 435-440. Fang Lili, Qi Jilin, Ma Wei. Freeze-Thaw Induced Changes in Soil Structure and Its Relationship with Variations in Strength[J]. Journal of Glaciology and Geocryology, 2012, 34(2): 435-440. [2] 张英, 邴慧. 基于压汞法的冻融循环对土体孔隙特征影响的试验研究[J]. 冰川冻土, 2015, 37(1): 169-174. Zhang Ying, Bing Hui. Experimental Study of the Effect of Freezing-Thawing Cycles on Porosity Characters of Silty Clay by Using Mercury Intrusion Porosimetry[J]. Journal of Glaciology and Geocryology, 2015, 37(1): 169-174. [3] 郑飞. 不同压实度黏性土微细观孔隙结构研究及分形表征[D]. 武汉: 湖北工业大学, 2014. Zheng Fei. Different Clayed Soil Compaction Degree Concept of Micro Pore Structure Research and Fractal Characterization[D]. Wuhan: Hubei University of Technology, 2014. [4] 高国瑞. 黄土显微结构分类与湿陷性[J]. 中国科学:A辑, 1980, 10 (12): 1203-1208. Gao Guorui. Classification of Loess Microstructure and Its Collapsibility[J]. Science in China:Series A, 1980, 10(12): 1203-1208. [5] Lapierre C, Leroueil S, Locat J. Mercury Intrusion and Permeability of Louiseville Clay[J]. Canadian Geotechnical Journal,2000, 27(6): 761-773. [6] 赵天宇, 张虎元, 严耿升, 等. 河西寒旱区盐渍土地层温湿度变化模式[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1466-1474. Zhao Tianyu, Zhang Huyuan, Yan Gengsheng, et al.Variation Pattern of Temperature and Humidity for Saline Soil in Cold and Arid Regions of Hexi Corridor[J]. Journal of Jilin University (Earth Science Edition), 2016, 46 (5) : 1466-1474. [7] 马骏骅, 马可, 徐贵娃. 冻融循环作用下黄土状土孔隙分布分形几何研究[J]. 煤炭工程, 2012(增刊2): 129-133. Ma Junhua, Ma Ke, Xu Guiwa. Study of Pore Distribution and Fractal Geometry of Loess Soil Under Freeze-Thaw Cycles[J]. Coal Engineering, 2012(Sup.2): 129-133. [8] 倪万魁, 师华强. 冻融循环作用对黄土微结构和强度的影响[J]. 冰川冻土, 2014, 36(4): 922-927. Ni Wankui, Shi Huaqiang. Influence of Freezing-Thawing Cycles on Micro-Structure and Shear Strength of Loess[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 922-927. [9] 肖东辉, 冯文杰, 张泽. 冻融循环作用下黄土孔隙率变化规律[J]. 冰川冻土, 2014, 36(4): 907-912. Xiao Donghui, Feng Wenjie, Zhang Ze. The Changing Rule of Loess's Porosity Under Freezing-Thawing Cycles[J]. Journal of Glaciology and Geocryology, 2014, 36(4): 907-912. [10] 张平. 软土孔隙特征及其固结过程中变化的研究[D]. 广州: 华南理工大学, 2011. Zhang Ping. Study on Pore Characteristic of Soft Soil and the Change of Pore Characteristic Between Consolidation Process[D]. Guangzhou: South China University of Technology, 2011. [11] 蒋明镜, 胡海军, 彭建兵, 等. 应力路径试验前后黄土孔隙变化及与力学特性的联系[J]. 岩土工程学报, 34(8): 1369-1377. Jiang Mingjing, Hu Haijun, Peng Jianbing, et al. Pore Changes of Loess Before and After Stress Path Tests and Their Links with Mechanical Behaviors[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(8): 1369-1377. [12] 上官禾林. 基于压汞法的油页岩孔隙特征的研究[D]. 太原: 太原理工大学, 2014. Shangguan Helin. Research on Oil Shale Pore Characteristics Based on Mercury Intrusion Method[D]. Taiyuan: Taiyuan University of Technology,2014. [13] 江福河. 压汞法对不同深度软土固结的微观孔隙特征研究[J]. 科学技术与工程, 2011, 11(31): 7701-7706. Jiang Fuhe. The Study of Micro Pore Characteristics on Different Depth Soft Soil Consolidation by Mercury Intrusion Porosimetry[J]. Science Technology and Engineering, 2011,11(31): 7701-7706. [14] 庄心善, 张立波, 陶高梁, 等. 压汞试验技术研究黏性土微观孔隙分布特性[J]. 湖北工业大学学报, 2013, 28(1): 22-24. Zhuang Xinshan, Zhang Libo, Tao Gaoliang, et al. Experiment Study on Microscopic Pore Distribution Characteristics of Clays Based on the Mercury Intrusion Technology[J]. Journal of Hubei University of Technology, 2013, 28(1): 22-24. [15] 刘松玉, 张继文. 土中孔隙分布的分形特征[J].东南大学学报, 1997, 27(3): 127-130. Liu Songyu, Zhang Jiwen. Fractal Approach to Measuring Soil Porosity[J]. Journal of Southeast University, 1997, 27(3): 127-130. [16] 陶高梁. 岩土多孔介质孔隙结构的分形研究及其应用[D].武汉: 武汉理工大学, 2010. Tao Gaoliang. Fractal Approach on Pore Structure of Rock and Soil Porous Media and Its Applications[D]. Wuhan: Wuhan University of Technology, 2010. [17] Sasanian S,Newson T A. Use of Mercury Intrusion Porosimetry for Microstructural Investigation of Reconstituted Clays at High Water Contents[J]. Engineering Geology, 2013, 158: 15-22. [18] 唐明, 王甲春, 李连君. 压汞测孔评价混凝土材料孔隙分形特征的研究[J]. 沈阳建筑工程学院学报(自然科学版), 2001, 17(4): 272-275. Tang Ming, Wang Jiachun, Li Lianjun. Research on Fractal Characteristics of Concrete Materials Pore with MIP[J]. Journal of Shenyang Architectural and Civil Engineering University (Nature Science), 2001, 17(4): 272-275. |
[1] | 彭湘林, 范文, 魏亚妮, 田陆, 邓龙胜. 黄土高原城市工程地质分区——以铜川地区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1480-1490. |
[2] | 韩朋, 翟云峰, 栗粲圪, 张运, 杨会会, 靳春胜. 末次间冰期以来洛川黄土天然剩磁记录的可靠性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 793-806. |
[3] | 宿晓萍,王清,王文华,孙昊月. 季节冻土区盐渍土环境下混凝土抗冻耐久性机理[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1244-1253. |
[4] | 张立原. 中国黄土高原洛川剖面S5以来的孢粉学记录[J]. 吉林大学学报(地球科学版), 2014, 44(1): 222-229. |
[5] | 张泽,马巍,齐吉琳. 冻融循环作用下土体结构演化规律及其工程性质改变机理[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1904-1914. |
[6] | 吴谦,王常明,马栋和,宋朋燃. 辽西黄土陡坡的冲刷破坏机制[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1563-1571. |
[7] | 庄建琦,彭建兵,张利勇. 不同降雨条件下黄土高原浅层滑坡危险性预测评价[J]. 吉林大学学报(地球科学版), 2013, 43(3): 867-876. |
[8] | 刘维明,杨胜利,方小敏. 川西高原黄土记录的末次冰期气候变化[J]. 吉林大学学报(地球科学版), 2013, 43(3): 974-982. |
[9] | 李滨, 殷跃平, 吴树仁, 石菊松. 多级旋转黄土滑坡形成机理及失稳模式[J]. J4, 2012, 42(3): 760-769. |
[10] | 安玉科, 佴磊. 冻融循环作用下节理岩体锚固性能退化机理和模式[J]. J4, 2012, 42(2): 462-467. |
[11] | 武彩霞, 戴福初, 闵弘, 涂新斌, 邝国麟, 周跃峰. 台塬塬顶裂缝对黄土斜坡水文响应的影响[J]. J4, 2011, 41(5): 1512-1519. |
[12] | 王常明, 马栋和, 林容, 王科, 宋朋燃. 辽西地区黄土的强度与本构特性[J]. J4, 2010, 40(5): 1104-1109. |
[13] | 王跃, 朱祥坤. 铜同位素在矿床学中的应用:认识与进展[J]. J4, 2010, 40(4): 739-751. |
[14] | 李秉成,胡培华,王艳娟. 关中泾阳塬全新世黄土剖面磁化率的古气候阶段划分[J]. J4, 2009, 39(1): 99-0106. |
[15] | 靳春胜,张立原,韩家懋,刘东生. 末次间冰期以来黄土古土壤容重特征[J]. J4, 2008, 38(5): 801-0805. |
|