吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1829-1837.doi: 10.13278/j.cnki.jjuese.201706206

• 地质工程与环境工程 • 上一篇    下一篇

再生水补水条件下土壤全氮空间分布特征

熊凯1,2,3, 宫兆宁1,2,3, 张磊1,2,3, 赵文吉1,2,3   

  1. 1. 首都师范大学资源环境与旅游学院, 北京 100048;
    2. 三维信息获取与应用教育部重点实验室, 北京 100048;
    3. 资源环境与地理信息系统北京市重点实验室, 北京 100048
  • 收稿日期:2017-03-23 出版日期:2017-11-26 发布日期:2017-11-26
  • 通讯作者: 宫兆宁(1976),女,副教授,博士,主要从事湿地环境遥感方面的研究,E-mail:gongzhn@163.com E-mail:gongzhn@163.com
  • 作者简介:熊凯(1992),女,博士研究生,主要从事湿地环境遥感与土壤侵蚀方面的研究,E-mail:XiongK7698@163.com
  • 基金资助:
    国际科技合作专项项目(2014DFA21620)

Spatial Distribution of Total Soil Nitrogen Under Reclaimed Water Recharge

Xiong Kai1,2,3, Gong Zhaoning1,2,3, Zhang Lei1,2,3, Zhao Wenji1,2,3   

  1. 1. College of Resources Environment & Tourism, Capital Normal University, Beijing 100048, China;
    2. Key Laboratory of 3D Information Acquisition and Application of Ministry, Beijing 100048, China;
    3. Base of the State Laboratory of Urban Environmental Processes and Digital Modeling of Beijing, Beijing 100048, China
  • Received:2017-03-23 Online:2017-11-26 Published:2017-11-26
  • Supported by:
    Supported by International Science and Technology Cooperation Program of China (2014DFA21620)

摘要: 土壤中的氮素是植物生长发育的基础,由于城市湿地土壤受特殊水文条件影响,土壤全氮(TN)的分布规律和影响机制较为复杂,因此研究土壤TN的空间分布特征具有重大的生态意义。本文以再生水为主要补给水源的北京门城湖湿地公园为研究区,运用ArcGIS和地统计学对该区土壤TN的空间分布特征进行研究。结果表明:研究区土壤TN质量分数较高,差值明显,变异系数达47.35%;比较不同的植物群落区可知,香蒲群落区土壤TN质量分数最高。对影响研究区土壤TN分布的因素分析得出:土壤TN、全磷(TP)质量分数呈极显著正相关关系(r=0.81,P<0.01);TN、土壤有机质(SOM)质量分数呈显著正相关关系(r=0.62,P<0.05);气候因子中,湿度和温度对TN分布同样影响显著。水质参数中,再生水出水口处测得的土壤TN的指标数值更高,随出水口距离的增加,参数值总体呈下降趋势且逐步趋于稳定,说明植被对湿地土壤中氮素空间分布的调整具有重要作用。

关键词: 土壤, 全氮, 空间分异, 北京门城湖, 再生水

Abstract: Nitrogen is essential for plant growth and development; therefore, it is of great significance to study the spatial distribution characteristics of nitrogen in soil supplied by recycled water. Soil tolal nitrogen(TN) is complex for its distribution and mechanism under the influence of hydrological conditions to a urban wetland. Taking Beijing Mencheng Lake Wetland Park as the study area, where the reclaimed water is the main water supply, we studied the spatial distribution characteristics of the total soil TN content using ArcGIS and Geo-statistics. The results show that the total soil TN content is high in the study area with a large range coefficient of variation of 47.35%. Among different plant communities in the area, the total soil TN content in typha community is the highest. The total phosphorus is closely correlated with TN (r=0.79,P<0.01); and soil organic matter is also obviously positively correlated with TN (r=0.58, P<0.05). Among the climate factors, temperature and humidity affect the distribution of total soil TN significantly in the study area. In addition, the soil TN measured at the reclaimed water outlet is higher than that in the other areas. With the increase of distance away from the outlet, the TN declines in general, and becomes stable. Our study indicates that vegetation plays an important role in adjusting soil nitrogen in the wetland treated with recycled water.

Key words: soil, total nitrogen, spatial distribution, Mencheng Lake,Beijing, reclaimed water

中图分类号: 

  • K903
[1] Ayoubi S, Karchegani P M, Mosaddeghi M R, et al. Soil Aggregation and Organic Carbon as Affected by Topography and Land Use Change in Western Iran[J]. Soil & Tillage Research, 2012, 121:18-26.
[2] Liu D, Wang Z, Zhang B, et al. Spatial Distribution of Soil Organic Carbon and Analysis of Related Factors in Croplands of the Black Soil Region, Northeast China[J]. Agriculture, Ecosystems & Environment, 2006, 113(1):73-81.
[3] 李龙, 姚云峰, 秦富仓,等. 黄花甸子流域土壤全氮含量空间分布及其影响因素[J]. 应用生态学报, 2015, 26(5):1306-1312. Li Long, Yao Yunfeng, Qin Fucang, et al. Spatial Distribution Pattern of Soil Nitrogen in Huanghuadianzi Watershed and Related Affecting Factors[J]. Chinese Journal of Applied Ecology, 2015, 26(5):1306-1312.
[4] 赵林, 郑义, 毛国柱,等. 天津围海造陆区吹填土氮磷的分布特征[J]. 吉林大学学报(地球科学版), 2015, 45(1):255-264. Zhao Lin, Zheng Yi, Mao Guozhu, et al. Spatial Distribution of Nitrogen and Phosphorus in Dredger Fill at Tianjin Reclamation Land Area[J]. Journal of Jilin University(Earth Science Editon), 2015, 45(1):255-264.
[5] Reza S K, Baruah U, Sarkar D, et al. Spatial Varia-bility of Soil Properties Using Geostatistical Method:A Case Study of Lower Brahmaputra Plains, India[J]. Arabian Journal of Geosciences, 2016, 9(6):1-8.
[6] 肖峻, 宗良纲, 曹丹,等. 宜兴地区不同利用方式下土壤氮、磷含量分布特性研究[J]. 土壤通报, 2012(2):347-352. Xiao Jun, Zong Lianggang, Cao Dan, et al. Research on Distribution of Soil Nitrogen and Phosphorus Content Under Different Types of Land Usage in Yixing[J]. Chinese Journal of Soil Science, 2012(2):347-352.
[7] 白军红, 丁秋档, 高海峰,等. 向海湿地不同植被群落下土壤氮素的分布特征[J]. 地理科学, 2009, 29(3):381-384. Bai Junhong, Ding Qiudang, Gao Haifeng, et al.Spatial Distribution of Nitrogen in Marsh Soils with Different Plant Communities in Xianghai Wetland[J]. Scientia Geographica Sinica, 2009, 29(3):381-384.
[8] 耿广坡, 高鹏, 吕圣桥,等. 鲁中南山区马蹄峪小流域土壤有机质和全氮空间分布特征[J]. 中国水土保持科学, 2011, 9(6):99-105. Geng Guangpo, Gao Peng, Lü Shengqiao, et al. Spatial Distribution of Soil Organic Matter and Total Nitrogen in Matiyu Small Watershed in Hilly Area of Middle Southern Shandong Province[J]. Science of Soil and Water Conservation, 2011, 9(6):99-105.
[9] 彭佩钦, 张文菊, 童成立, 等. 洞庭湖湿地土壤碳、氮、磷及其与土壤物理性状的关系[J]. 应用生态学报, 2005, 16(10):1872-1878. Peng Peiqin, Zhang Wenju, Tong Chengli, et al. Soil C, N and P Contents and Their Relationships with Soil Physical Properties in Wetlands of Dongting Lake Floodplain[J]. Chinese Journal of Applied Ecology, 2005, 16(10):1872-1878.
[10] 程先富, 史学正, 于东升, 等. 江西省兴国县土壤全氮和有机质的空间变异及其分布格局[J]. 应用与环境生物学报, 2004, 10(1):64-67. Cheng Xianfu, Shi Xuezheng, Yu Dongsheng, et al. Spatial Variance and Distribution of Total Nitrogen and Organic Matter of Soil in Xingguo[J]. Chin J Appl Environ Biol, 2004, 10(1):64-67.
[11] 王淑英, 路苹, 王建立,等. 不同研究尺度下土壤有机质和全氮的空间变异特征:以北京市平谷区为例[J]. 生态学报, 2008, 28(10):4957-4964. Wang Shuying, Lu Ping, Wang Jianli, et al. Spatial Variability and Distribution of Soil Organic Matter and Total Nitrogen at Different Scales:A Case Study in Pinggu County, Beijing[J]. Acta Ecologica Sinica, 2008, 28(10):4957-4964.
[12] 陈肖, 张世熔, 黄丽琴, 等. 成都平原土壤氮素的空间分布特征及其影响因素研究[J]. 植物营养与肥料学报, 2007, 13(1):1-7. Chen Xiao, Zhang Shirong, Huang Liqin, et al. Spatial Distribution Characteristic and Its Influential Factors of Soil Nitrogen in Chengdu Plain[J]. Plant Nutrition and Fertilizer Science, 2007, 13(1):1-7.
[13] 王青, 袁勇, 李传哲,等. 白洋淀湿地土壤氮素空间分布特征研究[J]. 环境保护科学, 2013, 39(4):1-6. Wang Qing, Yuan Yong, Li Chuanzhe,et al. Research of the Spatial Distribution Characteristics of Soil Nitrogen in the Baiyangdian Wetland[J]. Environmental Protection Science, 2013, 39(4):1-6.
[4] 黄智刚, 李保国, 胡克林. 丘陵红壤蔗区土壤有机质的时空变异特征[J]. 农业工程学报, 2006, 22(11):58-64. Huang Zhigang, Li Baoguo, Hu Kelin. Characteristics of the Spatio-Temporal Changes of Soil Organic Matter of Sugarcane Field in Red Soil Hill Areas[J]. Transactions of the CSAE, 2006, 22(11):58-64.
[15] 张全军, 于秀波, 钱建鑫,等. 鄱阳湖南矶湿地优势植物群落及土壤有机质和营养元素分布特征[J]. 生态学报, 2012, 32(12):3656-3669. Zhang Quanjun, Yu Xiubo, Qian Jianxin, et al. Distribution Characteristics of Plant Communities and Soil Organic Matter and Main Nutrients in the Poyang Lake Nanji Wetland[J]. Acta Ecologica Sinica, 2012, 32(12):3656-3669.
[16] Grunwald S, Reddy K R, Prenger J P, et al. Mode-ling of the Spatial Variability of Biogeochemical Soil Properties in a Freshwater Ecosystem[J]. Ecological Modelling, 2007, 201(3):521-535.
[17] Mishra T K, Banerjee S K. Storage of Carbon in Bio-mass and Soil of Coppice Sal (Shorea Robusta) Forests in the Lateritic Region of South West Bengal.[J]. Annals of Forestry, 2013, 21(1):19-28.
[18] Yavitt J B, Harms K E, Garcia M N, et al. Spatial Heterogeneity of Soil Chemical Properties in a Lowland Tropical Moist Forest, Panama[J]. Australian Journal of Soil Research, 2009, 47(7):674-687.
[19] Souza Z M D, Marques Júnior J, Pereira G T. Spatial Variability of the Physical and Mineralogical Properties of the Soil from the Areas with Variation in Landscape Shapes.[J]. Brazilian Archives of Biology & Technology, 2009, 52(2):305-316.
[20] 修晨, 郑华, 欧阳志云. 不同类型人类活动干扰对河岸带外来植物群落的影响:以北京永定河为例[J]. 生态学报, 2016, 36(15):4689-4698. Xiu Chen, Zheng Hua, Ouyang Zhiyun. Community Characteristics of Riparian Alien Plants Influenced by Different Types of Human Disturbance:A Case Study of Yongding River,Beijing[J]. Acta Ecologica Sinica, 2016, 36(15):4689-4698.
[21] 张万儒, 许本彤.森林土壤定位研究方法[M]. 北京:中国林业出版社, 1986. Zhang Wanru, Xu Bentong. Research Method of Forest Soil Location[M].Beijing:China Forestry Publishing House,1986.
[1] 王焱, 鹿琪, 刘财, 佘松盛, 刘四新. 利用GPR天线-目标极化的瞬时属性分析方法探测LNAPL污染土壤[J]. 吉林大学学报(地球科学版), 2018, 48(2): 491-500.
[2] 郑国东, 覃建勋, 付伟, 杨志强, 赵辛金, 卢炳科. 广西北部湾地区表层土壤As分布特征及其影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(1): 181-192.
[3] 李永涛, 郭高山, 顾延生, 韦林, 何思远. 钢厂周边污染土壤的电性与磁性特征及其环境意义[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1543-1551.
[4] 卞建民, 刘彩虹, 杨晓舟. 吉林西部大安灌区土壤贮水能力空间变异特征及土壤水分有效性[J]. 吉林大学学报(地球科学版), 2017, 47(2): 554-563.
[5] 代杰瑞,喻超,张杰,宁振国,王增辉,程鑫. 山东半岛蓝色经济区土壤有机碳储量及固碳潜力分析[J]. 吉林大学学报(地球科学版), 2014, 44(5): 1659-1668.
[6] 陈圣波,李鑫龙,陈磊. 基于地面实测光谱的水系沉积物重金属含量反演[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1388-1394.
[7] 张明,陈国光,高超,杨辉,刘红樱,梁晓红,尹爱经,张徐. 华东多目标区域地球化学调查区土壤常量元素地球化学特征[J]. 吉林大学学报(地球科学版), 2014, 44(3): 995-1002.
[8] 汤洁,梁爽,张豪,吴佳曦,娄云. 吉林西部盐碱水田区冻融期土壤水盐运移特征及酶活性变化[J]. 吉林大学学报(地球科学版), 2014, 44(2): 636-644.
[9] 张立原. 中国黄土高原洛川剖面S5以来的孢粉学记录[J]. 吉林大学学报(地球科学版), 2014, 44(1): 222-229.
[10] 何雨江,蔺文静,王贵玲. 利用TDR100系统原位监测深厚包气带水热动态[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1972-1979.
[11] 王金哲,张光辉,严明疆,聂振龙,刘中培. 半干旱半湿润地区土壤盐分平衡情势评价方法及应用[J]. 吉林大学学报(地球科学版), 2013, 43(3): 939-944.
[12] 魏华玲,周国华,孙彬彬,刘占元,曾道明. 浙江省东部土壤元素地球化学特征及意义[J]. 吉林大学学报(地球科学版), 2013, 43(2): 564-572.
[13] 束龙仓, 荆艳东, 黄修东, 余钟波, 王振龙. 改进的无作物潜水蒸发经验公式[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1859-1865.
[14] 崔嵩,杨萌,李一凡. 不同土壤类型多氯联苯土壤残留特征变化分析[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1880-1888.
[15] 成杭新,杨晓波,李括,刘飞,杨柯,聂海峰,彭敏,赵传冬,刘英汉. 辽河流域土壤酸化与作物籽实镉生物效应的地球化学预警[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1889-1895.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!