吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (6): 1875-1884.doi: 10.13278/j.cnki.jjuese.201706304
刘志强, 孙建国, 孙辉, 刘明忱, 高正辉, 石秀林
Liu Zhiqiang, Sun Jianguo, Sun Hui, Liu Mingchen, Gao Zhenghui, Shi Xiulin
摘要: 在地震波数值模拟中,需要采用吸收边界条件以吸收人为边界反射。本文针对曲线坐标系下的二阶弹性波方程提出了一种完全匹配层(PML)吸收边界条件。与直角坐标系下的PML吸收边界条件类似,曲线坐标系下的PML吸收边界条件是一种在频率域中给出的人工边界条件,由相应的复坐标变换得到。在变换到时间域后,完全匹配层中将出现复杂的卷积运算。为了避免这些卷积运算,引入了4个中间变量。为了简化自由边界条件,采用正交贴体网格对起伏地表模型进行网格剖分。数值算例表明,该方法可以有效消除人为边界反射。
中图分类号:
[1] Clayton R,Engquist B. Absorbing Boundary Conditi-ons for Acoustic and Elastic Wave Equations[J]. Bulletin of the Seismological Society of America, 1977, 67(6):1529-1540. [2] Cerjan C, Kosloff D, Kosloff R, et al.A Nonreflecting Boundary Condition for Discrete Acoustic and Elastic Wave Equations[J]. Geophysics, 1985, 50(4):705-708. [3] Berenger J P.A Perfectly Matched Layer for the Ab-sorption of Electromagnetic Waves[J]. Journal of Computational Physics, 1994, 114(2):185-200. [4] Hastings F D, Schneider J B,Broschat S L. Appli-cation of the Perfectly Matched Layer (PML) Absorbing Boundary Condition to Elastic Wave Propagation[J]. The Journal of the Acoustical Society of America, 1996, 100(5):3061-3069. [5] Collino F, Tsogka C. Application of the Perfectly Ma-tched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):294-307. [6] Zeng Y Q, He J Q, Liu Q H.The Application of the Perfectly Matched Layer in Numerical Modeling of Wave Propagation in Poroelastic Media[J]. Geophysics, 2001, 66(4):1258-1266. [7] Jih R S, McLaughlin K L, Der Z A. Free-Boundary Conditions of Arbitrary Polygonal Topography in a Two-Dimensional Explicit Elastic Finite-Difference Scheme[J]. Geophysics, 1988, 53(8):1045-1055. [8] Ilan A. Finite-Difference Modeling for P-Pulse Propa-gation in Elastic Media With Arbitrary Polygonal Surface[J]. Journal of Geophysics, 1977, 43(1/2):41-58. [9] Opršal I, Zahradnik J. Elastic Finite-Difference Me-thod for Irregular Grids[J]. Geophysics, 1999, 64(1):240-250. [10] Frankel A, Leith W. Evaluationof Topographic Eff-ects on P and S-Waves of Explosions at the Northern Novaya Zemlya Test Site Using 3-D Numerical Simulations[J]. Geophysical Research Letters, 1992, 19(18):1887-1890. [11] Hestholm S, Ruud B. 2D Finite-Difference Elastic Wave Modelling Including Surface Topography[J]. Geophysical Prospecting, 1994, 42(5):371-390. [12] Hestholm S, Ruud B. 3-D Finite-Difference Elastic Wave Modeling Including Surface Topography[J]. Geophysics, 1998, 63(2):613-622. [13] Tessmer E, Kosloff D, Behle A. Elastic Wave Propa-gation Simulation in the Presence of Surface Topography[J]. Geophysical Journal International, 1992, 108(2):621-632. [14] 李庆洋,李振春,黄建平,等. 基于贴体全交错网格的起伏地表正演模拟影响因素[J]. 吉林大学学报(地球科学版),2016,46(3):920-929. Li Qingyang, Li Zhenchun, Huang Jianping, et al. Factor Analysis of Seismic Modeling with Topography Based on a Fully Staggered Body-Fitted Grids[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):920-929. [15] Appelö D, Petersson N A. A Stable Finite Difference Method for the Elastic Wave Equation on Complex Geometries with Free Surfaces[J]. Communications in Computational Physics, 2009, 5(1):84-107. [16] Lan H, Zhang Z. Three-Dimensional Wave-Field Si-mulation in Heterogeneous Transversely Isotropic Medium with Irregular Free Surface[J]. Bulletin of the Seismological Society of America, 2011, 101(3):1354-1370. [17] Festa G, Vilotte J P. The Newmark Scheme as Ve-locity-Stress Time-Staggering:An Efficient PML Implementation for Spectral Element Simulations of Elastodynamics[J]. Geophysical Journal International, 2005, 161(3):789-812. [18] Gao H, Zhang J. Implementationof Perfectly Matched Layers in an Arbitrary Geometrical Boundary for Elastic Wave Modelling[J]. Geophysical Journal International, 2008, 174(3):1029-1036. [19] 孙建国,蒋丽丽. 用于起伏地表条件下地球物理场数值模拟的正交曲网格生成技术[J]. 石油地球物理勘探, 2009,44(4):494-500. Sun Jianguo,Jiang Lili. Orthogonal Curvilinear Grid Generation Technique Used for Numeric Simulation of Geophysical Fields in Undulating Surface Condition[J]. Oil Geophysical Prospecting, 2009, 44(4):494-500. [20] Hvid S L. Three Dimensional Algebraic Grid Gene-ration[M]. Kongens Lyngby:Technical University of Denmark, 1995. [21] Fornberg B. Generation of Finite Difference Formulas on Arbitrarily Spaced Grids[J]. Mathematics of Computation, 1988, 51(184):699-706. [22] Lan H Q, Zhang Z J. Seismic Wavefield Modeling in Media with Fluid-Filled Fractures and Surface Topography[J]. Applied Geophysics, 2012, 9(3):301-312. [23] Collino F, Tsogka C. Application of the Perfectly Matched Absorbing Layer Model to the Linear Elastodynamic Problem in Anisotropic Heterogeneous Media[J]. Geophysics, 2001, 66(1):294-307. [24] Collino F, Monk P. The Perfectly Matched Layer in Curvilinear Coordinates[J]. SIAM Journal on Scientific Computing, 1998, 19(6):2061-2090. [25] 丘磊,田钢,石战结, 等. 起伏地表条件下有限差分地震波数值模拟:基于广义正交曲线坐标系[J]. 浙江大学学报(工学版), 2012,46(10):1923-1931. Qiu Lei,Tian Gang,Shi Zhanjie, et al. Finite-Difference Method for Seismic Wave Numerical Simulation in Presence of Topography[J]. Journal of Zhejiang University (Engineering Scinice), 2012,46(10):1923-1931. |
[1] | 叶云飞, 孙建国, 张益明, 熊凯. 基于立体层析反演的低频模型构建在深水区储层反演中的应用:以南海深水W构造为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1253-1259. |
[2] | 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267. |
[3] | 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243. |
[4] | 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252. |
[5] | 刘明忱, 孙建国, 韩复兴, 孙章庆, 孙辉, 刘志强. 基于自适应加权广义逆矢量方向滤波估计地震同相轴倾角[J]. 吉林大学学报(地球科学版), 2018, 48(3): 881-889. |
[6] | 胡宁, 刘财. 分数阶时间导数计算方法在含黏滞流体黏弹双相VTI介质波场模拟中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 900-908. |
[7] | 周进举, 王德利, 李博文, 李强, 王睿. 基于解耦传播的波场分解方法在VTI介质弹性波逆时偏移中的应用[J]. 吉林大学学报(地球科学版), 2018, 48(3): 909-921. |
[8] | 孙建国, 苗贺. 基于Chebyshev走时逼近的三维多次反射射线计算[J]. 吉林大学学报(地球科学版), 2018, 48(3): 890-899. |
[9] | 郑确, 刘财, 田有. 辽宁海城及其邻区地震b值空间分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 922-933. |
[10] | 刘四新, 朱怡诺, 王旭东, 宋二乔, 贺文博. 工程地震折射波解释方法研究进展[J]. 吉林大学学报(地球科学版), 2018, 48(2): 350-363. |
[11] | 单刚义, 韩立国, 张丽华. 基于模型约束的Kirchhoff积分法叠前深度成像[J]. 吉林大学学报(地球科学版), 2018, 48(2): 379-383. |
[12] | 孙建国, 李懿龙, 孙章庆, 苗贺. 基于模型参数化的地震波走时与射线路径计算[J]. 吉林大学学报(地球科学版), 2018, 48(2): 343-349. |
[13] | 宁亚灵, 许家姝, 解滔, 张国苓, 卢军. 大柏舍深井地电阻率观测布极方式分析[J]. 吉林大学学报(地球科学版), 2018, 48(2): 525-533. |
[14] | 徐泰然, 卢占武, 王海燕, 李洪强, 李文辉. 深地震反射剖面揭示的西藏娘热矿集区上地壳结构[J]. 吉林大学学报(地球科学版), 2018, 48(2): 556-565. |
[15] | 王通, 王德利, 冯飞, 程浩, 魏敬轩, 田密. 三维稀疏反演多次波预测及曲波域匹配相减技术[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1865-1874. |
|