吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (3): 893-901.doi: 10.13278/j.cnki.jjuese.20180093

• 地球探测与信息技术 • 上一篇    下一篇

基于Landsat 8的辽宁弓长岭区遥感蚀变信息提取

贺金鑫, 姜天, 董永胜, 韩凯旭, 马宁, 熊玥   

  1. 吉林大学地球科学学院, 长春 130061
  • 收稿日期:2018-04-27 出版日期:2019-06-03 发布日期:2019-06-03
  • 作者简介:贺金鑫(1979-),男,教授,博士,主要从事多/高光谱遥感地质,多维地质建模、模拟与可视化方面的研究,E-mail:hejx@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41430210);中国地质调查局项目(DD20160121)

Alteration Information Extraction Based on Remote Sensing of Landsat 8 in Gongchangling Area of Liaoning

He Jinxin, Jiang Tian, Dong Yongsheng, Han Kaixu, Ma Ning, Xiong Yue   

  1. College of Earth Sciences, Jilin University, Changchun 130061, China
  • Received:2018-04-27 Online:2019-06-03 Published:2019-06-03
  • Supported by:
    Supported by National Natural Science Foundation of China(41430210) and Geological Survey Project of the China Geological Survey(DD20160121)

摘要: 在详细解读辽宁弓长岭区Landsat 8影像数据的基础上,结合矿物光谱理论和弓长岭地区(地表植被覆盖严重)的基础地质资料,采用主成分分析法与比值法相结合的方式对该区2017-05和2017-08两个时段的Landsat 8多光谱遥感数据的蚀变异常信息进行了提取。结果表明:利用主成分分析法与比值法相互结合所形成的波段组合比单独运用主成分分析所提取的蚀变异常信息更加明显;此次研究中2017-05数据所提取出的羟基蚀变信息及2017-08数据所提取的铁染蚀变信息主要分布于弓长岭一矿区、二矿区、三矿区和独木-八盘岭矿区地表出露矿体的外围。这也说明将主成分分析法与比值法相结合对于植被覆盖严重区域的蚀变信息提取仍具有较好的效果。

关键词: 多光谱遥感, Landsat 8数据, 主成分分析法, 比值法, 弓长岭铁矿, 弓长岭区

Abstract: Based on a detailed interpretation of Landsat 8 remote sensing data of Gongchangling in Liaoning Province, combined with the theory of mineral spectrum and basic geological data in Gongchangling area (with serious vegetation cover), the alteration anomaly information in 2017-05 and 2017-08 was extracted by using the method of principal component and ratio analysis. The results show that the band combination formed by the method combination of principal component and ratio analyses is more obvious than the abnormal information extracted by principal component analysis alone. The information of hydroxyl alteration extracted from 2017-05 data and the iron dyeing alteration extracted from 2017-08 data are mainly distributed in the periphery of exposed orebodies in Gongchangling No. 1, No. 2, No. 3 and Dumu-Bapanling mining areas. It is also shown that the combination of principal component analysis and ratio method is effective in extracting alteration information in the areas with serious vegetation cover.

Key words: multispectral remote sensing, Landsat 8 data, principal component analysis (PCA), ratio method, Gongchangling iron mine, Gongchangling area

中图分类号: 

  • P627
[1] 刘光辉. 高植被区多源遥感数据蚀变信息提取与分析[D].成都:成都理工大学,2017. Liu Guanghui. Extraction and Analysis of Information of Alteration with Multi-Source Remote Sensing Data in High Vegetation Coverage Area[D]. Chengdu:Chengdu University of Technology, 2017.
[2] 朱亮璞,田淑芳,张骞.遥感地质学[M].北京:地质出版社,2013. Zhu Liangpu,Tian Shufang,Zhang Qian. Remote Sensing Geology[M]. Beijing:Geological Publishing House, 2013.
[3] 毛华锐.云南凤庆地区遥感地质解译及矿化蚀变信息提取[D].成都:成都理工大学,2015. Mao Huarui. Geological Evaluation and Alteration Information Extraction with Remote Sensing Image in Fengqing Area of Yunnan Province[D]. Chengdu:Chengdu University of Technology, 2015.
[4] 梁昊,李程,李佳奇.基于Landsat 8遥感影像的矿化信息提取[J].南方国土资源,2016(11):30-32. Liang Hao,Li Cheng,Li Jiaqi. Extraction of Mineralized Information Based on Landsat 8 Remote Sensing Image[J]. Nanfang Guotu Ziyuan, 2016(11):30-32.
[5] 马威,温兴平,吴光辉,等.云南毛坪铅锌矿Landsat 8 OLI遥感影像组合分析法蚀变信息提取研究[J].河南科学,2016,34(2):267-272. Ma Wei,Wen Xingping,Wu Guanghui,et al. Extraction Method Maoping Lead Zinc Mine in Yunnan Landsat 8 OLI Alteration Information Based on Remote Sensing Images[J]. Henan Science, 2016,34(2):267-272.
[6] 王有权.矿化蚀变遥感信息提取研究与应用[D].阜新:辽宁工程技术大学, 2011. Wang Youquan. The Research and Application of Mineralized Alteration of Remote Sensing Information Extraction in Liaoning Gongchangling Strip Mine[D]. Fuxin:Liaoning Technical University, 2011.
[7] 付玲芝.辽宁省弓长岭铁矿磁铁矿-赤铁矿转变机制研究[D].长春:吉林大学,2016. Fu Lingzhi. Study on Mechanism of Transforming Between Magnetite and Hematite of Gongchangling Iron Deposit in Liaoning Province[D]. Changchun:Jilin University, 2016.
[8] 李晓东,姜琦刚.吉林西部多时相遥感数据分类方案的构建及应用[J].吉林大学学报(地球科学版), 2017,47(3):266-274. Li Xiaodong,Jiang Qigang. Land Cover Classification Method Based on Multi-Temporal Satellite Images:Taking Western Jilin Region as an Example[J]. Journal of Jilin University(Earth Science Edition), 2017,47(3):266-274.
[9] 夏建明.辽宁弓长岭BIF型铁矿田成矿环境与富铁矿床形成机制的研究[D].沈阳:东北大学,2013. Xia Jianming. The Study on Metallogenic Environment and High-Grade Iron Deposits Formation Mechanism of Gongchangling, Liaoning Province[D]. Shenyang:Institute of Geological Resources and Engineering of Northeastern University, 2013.
[10] 张玉君.Landsat 8简介[J].国土资源遥感,2013,25(1):176-177. Zhang Yujun. The Introduction of Landsat 8[J]. Remote Sensing for Land & Resource, 2013,25(1):176-177.
[11] 邓书斌,陈秋锦,杜会建,等.ENVI遥感图像处理方法[M].北京:高等教育出版社,2014:277-297. Deng Shubin,Chen Qiujin,Du Huijian,et al. ENVI Remote Sensing Image Processing Method[M]. Beijing:Higher Education Press, 2014:277-297.
[12] 倪衡,刘晓颖.一种基于Landsat 8遥感数据快速提取水体信息的新方法[J].科技资讯,2015,13(19):7-9. Ni Heng,Liu Xiaoying. A New Method for Fast Extraction of Water Information Based on Landsat 8 Remote Sensing Data[J]. Science&Technology Information, 2015,13(19):7-9.
[13] 张玉君,曾朝铭.西藏冈底斯地区斑岩铜矿识别的最佳多光谱遥感异常判据[J].矿产地质,2012,31(4):671-698. Zhang Yujun,Zeng Zhaoming. Study of Optimum Discriminator of Multichannel Remote Sensing Anomaly for Recognition of Porphyyry Cu Deposits in Gangdese Belt[J]. Mineral Deposits, 2012,31(4):671-698.
[14] Zhang T,Yi G Li H,et al.Integrating Data of ASTER and Landsat-8 OLI (AO) for Hydrothermal Alteration Mineral Mapping in Duolong Porphyry Cu-Au Deposit, Tibetan Plateau, China[J]. Remote Sensing, 2016, 8(12):890.
[1] 束龙仓, 李姝蕾, 王松, 克热木·阿布都米吉提, 鲁程鹏, 李砚阁, 李伟. 岩溶水源地安全供水的风险评价指标筛选——以娘子关泉水源地为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 805-814.
[2] 刘大为, 王铭晗, 刘素巧, 胡克. 辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(3): 694-705.
[3] 刘洋, 李炳秀, 刘财, 陈常乐, 杨学亭. 局部时频变换域地震波吸收衰减补偿方法[J]. 吉林大学学报(地球科学版), 2016, 46(2): 594-602.
[4] 于磊,邱殿明,刘莉,凌峰,李巍,胡广鑫,刘国才. 基于SPCA和AHP联合方法的滦河流域生态环境脆弱性变化规律分析[J]. 吉林大学学报(地球科学版), 2013, 43(5): 1588-1594.
[5] 辛 馨,杨俊鹏,赵奎涛,胡 克. 双台河口土壤中Mn、Zn和Rb的变化规律及其原因分析[J]. J4, 2007, 37(5): 983-0987.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!