吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (3): 694-705.doi: 10.13278/j.cnki.jjuese.201703105

• 地质与资源 • 上一篇    下一篇

辽宁弓长岭铁矿二矿区条带状铁建造地球化学特征及成因探讨

刘大为1, 王铭晗2, 刘素巧3, 胡克1   

  1. 1. 中国地质大学(北京)海洋学院, 北京 100083;
    2. 中国地质图书馆/中国地质调查局地学文献中心, 北京 100083;
    3. 北京地星伟业数码科技有限公司, 北京 100080
  • 收稿日期:2016-09-19 出版日期:2017-05-26 发布日期:2017-05-26
  • 通讯作者: 胡克(1957),男,教授,博士生导师,主要从事变质岩岩石学及地球化学方面的研究,E-mail:huke@cugb.edu.cn E-mail:huke@cugb.edu.cn
  • 作者简介:刘大为(1986-),男,博士研究生,主要从事地球化学研究,E-mail:ldw861111@163.com
  • 基金资助:
    全国危机矿山接替资源找矿项目(200521036)

Geochemical Characteristics and Genesis of Band Iron Formation in No.2 Mining Area of Gongchangling Iron Deposit, Liaoning Province

Liu Dawei1, Wang Minghan2, Liu Suqiao3, Hu Ke1   

  1. 1. School of Marine Sciences, China University of Geosciences, Beijing 100083, China;
    2. National Geological Library of China/Geosciences Documentation Center, CGS, Beijing 100083, China;
    3. Beijing Landstar Digital Technology Company Limited, Beijing 100080, China
  • Received:2016-09-19 Online:2017-05-26 Published:2017-05-26
  • Supported by:
    Supported by National Crisis Mines Replacement Resources Prospecting Project (200521036)

摘要: 本文以弓长岭铁矿二矿区磁铁石英岩、磁铁富矿和蚀变围岩样品为研究对象,进行了主量元素、微量元素、稀土元素和Fe同位素的测试。结果表明:磁铁石英岩主要由TFe2O3和SiO2组成,Al2O3和TiO2质量分数较低,微量元素质量分数和稀土元素质量分数均较低;经澳大利亚后太古界平均页岩(PAAS)标准化的稀土配分模式呈现出轻稀土亏损和重稀土富集,La、Eu和Y的正异常明显,Ce的异常不明显,Y/Ho值较高;富集Fe的重同位素,且与海底喷发热液经过氧化沉淀后的Fe同位素特征一致。磁铁富矿与磁铁石英岩的地球化学特征有很好的一致性和继承性,但磁铁富矿的REE和Eu质量分数较高,且较磁铁石英岩富集Fe的轻同位素,范围更大,与蚀变岩的Fe同位素组成相近。弓长岭铁矿的磁铁石英岩是陆源物质加入很少的古海洋化学沉积岩,为喷出的海底热液与海水的混合条件下氧化沉淀形成的。磁铁富矿推测为富Fe的轻同位素热液对磁铁石英岩进行改造,经过去硅富铁作用形成的。

关键词: Fe同位素, 稀土元素, 成因探讨, 弓长岭铁矿, 地球化学

Abstract: In this paper, major elements, trace elements and Fe isotope composition of the magnetite quartzite, magnetite-rich ore and altered rock are presented. The average bulk compositions of the magnetite quartzite are characterized by high total Fe2O3 and SiO2, and low contents of Al2O3 and TiO2. The overall contents of trace elements and ΣREE in magnetite quartzite are very low. In the Post Archean Australian shale(PAAS) normalized REE patterns, samples display LREE depletion, distinct positive anomalies of La, Eu, Y, unobvious Ce anomalies, high Y/Ho values and heavy Fe isotope enrichment(relative to IRMM-014), which consists with the Fe isotope of oxidized and precipitated hydrothermal fluid. The geochemical charateristics of magnetite-rich ores are similar with those of the magnetite quartzite. However, ΣREE and Eu contents in the magnetite-rich ore are higher. Compared with magnetite quarterite, the magnetite-rich ore is characterized by the enrichment of light Fe isotope with larger range, which is similar to the altered rock. The magnetite quartzite is paleo-ocean chemical sedimentary rocks with devoid of terrestrial sediments, and experienced the oxidation and precipitation induced by the mixing of the submarine hydrothermal solution and the seawater. It can be deduced that the high grade iron ore was formed by the reworking of the low grade iron ore by the hydrothermal system with light Fe isotope enrichment, which resulted in Fe enrichment and Si depletion.

Key words: Fe isotope, rare earth element, genesis, Gongchanglingiron deposit, geochemistry

中图分类号: 

  • P618.31
[1] 程裕淇. 中国东北部辽宁山东等省前震旦纪鞍山式条带状铁矿中富矿的成因问题[J]. 地质学报, 1957, 37(2): 153-180. Cheng Yuqi. Problems on the Henesis of the High-Grade Ore in the Pre-Sinian (Precambrian) Banded Iron Ore Deposits of the Anshan-Type in Liaoning and Shandong Provinces[J].Acta Geologica Sinica, 1957, 37(2):153-180.
[2] 万渝生. 辽宁弓长岭含铁岩系的形成与演化[M]. 北京: 北京科学技术出版社, 1993. Wan Yusheng. The Formation and Evolvement of Ferreous Rock Series of Gongchangling, Liaoning Province [M]. Beijing: Beijing Science and Technology Press, 1993.
[3] 周世泰. 鞍山—本溪地区条带状铁矿地质[M]. 北京: 地质出版社, 1994: 200-265. Zhou Shitai. The BIF Geology of Anshan-Benxi Area [M]. Beijing: Geological Publishing House, 1994: 200-265.
[4] 李志红, 朱祥坤, 唐索寒. 鞍山—本溪地区条带状铁建造的铁同位素与稀土元素特征及其对成矿物质来源的指示[J]. 岩石矿物学杂志, 2008, 27(4): 285-290. Li Zhihong, Zhu Xiangkun, Tang Suohan. Characters of Fe Isotopes and Rare Earth Elements of Banded Iron Formations from Anshan-Benxi Area: Implications for Fe Source[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 285-290.
[5] 陈光远, 黎美华, 汪雪芳, 等. 弓长岭铁矿成因矿物学专辑[J]. 矿物岩石, 1984, 4(2): 1-241. Chen Guangyuan, Li Meihua, Wang Xuefang, et al. Genetic Mineralogy of Gongchangling Iron Mine[J]. Minerals and Rocks, 1984, 4(2): 1-241.
[6] 董申保, 张秋生, 李树勋. 辽宁半岛前震旦纪混合岩化成矿作用[M]. 长春: 长春地质学院出版社, 1972. Dong Shenbao, Zhang Qiusheng, Li Shuxun. The Migmatizationg Mineralization in Pre-Sinian (Precambrian), Liaodong Peninsula[M]. Changchun: Changchun College of Geology Publishing House, 1972.
[7] 李绍柄. 鞍山式铁矿富磁铁矿矿床的成因[C]//中国科学院富铁矿科研论文集编辑组. 富铁科研论文集. 北京: 科学技术文献出版社, 1978: 134-139. Li Shaobing. Origin of Magnetite-Rich Deposits in Anshan-Type Iron Ore[C]//Proceedings Editor, Chinese Academy of Rich Iron Ore Research Group. Proceedings of Rich Iron Ore Research. Beijing: Science and Technology Literature Publishing House, 1978: 134-139.
[8] 李曙光, 支霞臣, 陈江峰, 等. 鞍山前寒武纪条带状含铁建造中石墨的成因[J]. 地球化学, 1983(2): 162-169. Li Shuguang, Zhi Xiachen, Chen Jiangfeng, et al. Origin of Graphites in Early Precambrian Banded Iron Formation in Anshan, China[J]. Geochimica, 1983(2):162-169.
[9] 王跃, 朱祥坤. 铁同位素体系及其在矿床学中的应用[J]. 岩石学报, 2012, 28(11): 3638-3654. Wang Yue, Zhu Xiangkun. Fe Isotope Systematics and Its Implications in Ore Deposit Geology[J]. Acta Petrologica Sinica, 2012, 28 (11) : 3638-3654.
[10] 赵斌, 李统锦. 鞍山弓长岭富磁铁矿床的形成机制和物理化学条件研究[J]. 地球化学, 1980(4): 333-344. Zhao Bin, Li Tongjin. A Preliminary Study on the Mechanism and Physicochemical Conditions of Formation of Gongchangling Rich Iron Deposit[J]. Geochimica, 1980(4): 333-344.
[11] 刘军, 靳淑韵. 辽宁弓长岭铁矿磁铁富矿的成因研究[J]. 现代地质, 2010, 24(1): 80-88. Liu Jun, Ji Shuyun. Genesis Study of Magnetite-Rich Ore in Gongchangling Iron Deposit, Liaoning[J]. Geosciece, 2010, 24(1): 80-88.
[12] 李厚民, 刘明军, 李立兴, 等. 弓长岭铁矿二矿区蚀变岩中锆石SHRIMP U-Pb年龄及地质意义[J]. 岩石学报, 2014, 30(5):1205-1217. Li Houmin, Liu Mingjun, Li Lixing, et al. SHRIMP U-Pb Geochronology of Zircons From the Garnet-Rich Altered Rocks in the Mining Area II of the Gongchangling Iron Deposit: Constraints on the Ages of the High-Grade Iron Deposit[J]. Acta Petrologica Sinica, 2014, 30(5): 1205-1217.
[13] 朱祥坤, 李志红, 赵新苗, 等. 铁同位素的MC-ICP-MS 测定方法与地质标准物质的铁同位素组成[J]. 岩石矿物学杂志,2008, 27(4): 263-272. Zhu Xiangkun, Li Zhihong, Zhao Xinmiao, et al.High-Precision Measurements of Fe Isotopes Using MC-ICP-MS and Fe Isotope Compositions of Geological Reference Materials[J]. Acta Petrologica et Mineralogica, 2008, 27(4): 263-272.
[14] Sun S S, McDonough W F. Chemical and Isotopic Systemtics of Oceanic Basalts:Implications of Mantle Composition and Processes[C]//Saunders A D, NorryM J. Magmatism in the Ocean Basins. London:Geological Sociey Special Publication, 1989, 42:313-345.
[15] McLennan S B. Rare Earth Elements in Sedimentary Rocks: Influence of Provenance and Sedimentary Processes[C]//Lipin B R,Mckay G A. Geochemistry and Mineralogy of Rare Earth Elements. Washington: Mineralogical Society of America, 1989: 169-200.
[16] Planavsky N, Bekker A, Rouxel O J, et al. Rare Earth Element and Yttrium Compositions of Archean and Paleoproterozoic Fe Formations Revisited: New Perspectives on the Significance and Mechanisms of Deposition[J]. Geochimica et Cosmochimica Acta, 2010, 74: 6387-6405.
[17] 李志红, 朱祥坤, 唐索寒. 鞍山本溪地区条带状铁矿的Fe 同位素特征及其对成矿机理和地球早期海洋环境的制约[J]. 岩石学报, 2012, 28(11): 3645-3658. Li Zhihong, Zhu Xiangkun, Tang Suohan. Fe Isotope Compositions of Banded Iron Formation from Anshan-Benxi Area: Constraints on the Formation Mechanism and Archean Ocean Environment[J]. Acta Petrologica Sinica, 2012, 28(11) : 3645-3658.
[18] Dymek R F, Klein C. Chemistr, Petrology andy Origin of Banded Iron Formation Lithologies from the 3 800 Ma Isua Supracrustal Belt, West Greenland[J]. Precambrian Research, 1988, 39(4): 247-302.
[19] German C R,Elderfield H. Rare Earth Elements in Saanich Inlet, British Columbia, a Seasonally Anoxic Basin[J]. Geochimica et Cosmochimica Acta, 1989, 53(10): 2561-2571.
[20] Bau M,Dulski P. Distribution of Yttrium and Rare-Earth Elements in the Penge and Kuruman Iron-Formations, Transvaal Supergroup, South Africa[J]. Precambrian Research, 1996, 79: 37-55.
[21] Kato Y, Kawakami T, Kano T, et al. Rare-Earth Element Geochemistry of Banded Iron Formations and Associated Amphibolite from the Sargur Belts, South India[J]. Southeast Asian Earth Scieces, 1996, 3(14): 161-164.
[22] Mloszewska A M, Pecoits E, Cates N L, et al. The Composition of Earth's Oldest Iron Formations: The Nuvvuagittuq Supracrustal Belt (Québec, Canada)[J]. Earth and Planetary Science Letters, 2012(317/318): 331-342.
[23] Bau M, Dulski P. Comparing Yttrium and Rare Ea-rths in Hydrothermal Fluids from the Mid-Atlantic Ridge: Implications for Y and REE Behaviour During Near-Vent Mixing and for the Y/Ho Ratio of Proterozoic Seawater[J]. Chemical Geology, 1999, 155(1/2): 77-90.
[24] Alibo D S,Nozaki Y. Rare Earth Elements in Sea-water: Particle Association, Shale-Normalization and Ce Oxidation[J].Geochimica et Cosmochimica Acta, 1999, 63(3): 363-372.
[25] Bolhar R, Kamber B S, Moorbath S, et al. Chara-cterisation of Early Archaean Chemical Sediments by Trace Element Signatures[J]. Earth and Planetary Science Letters, 2004, 222: 43-60.
[26] Garrels R M, Perry E A, Mackenzie F T. Genesis of Precambrian Iron-Formations and the Development of Atmospheric Oxygen[J]. Economic Geology, 1973, 68(7): 1173-1179.
[27] Konhauser K O, Hamade T, Raiswell R, et al.Could Bacteria Have Formed the Precambrian Banded Iron Formations?[J]. Geology, 2002, 30: 1079-1082.
[28] Johannson J M, Davis J L, Scherneck H G, et al. Continuous GPS Measurements of Postglacial Adjustment in Fennoscandia 1. Geodetic Results[J]. Journal of Geophysical Research: Part B: Solid Earth, 2002, 107 (B8) :2157.
[29] Beard B L,Johnson C M. Fe Isotope Variations in Themodern and Ancient Earth and Other Planetary Bodies[J]. Reviews in Mineralogy and Geochemistry, 2004, 55(1): 319-357.
[30] Johnson C M,Beard B L. Fe Isotopes: An Emerging Techniques for Understanding Modern and Ancient Biogeochemical Cycles[J]. GSA Today, 2006, 16 (11): 4-10.
[31] 刘素巧. 辽宁弓长岭条带状铁建造磁铁富矿成因探讨:基于Fe同位素研究[D]. 北京: 中国地质大学, 2011. Liu Suqiao. Discussion on the Genesis of Magnetite-Rich Ore in Gongchangling, Liaoning Province: Evidence from the Iron Stable Isotope[D]. Beijing; China University of Geosciences, 2011.
[32] 刘明军. 辽宁弓长岭沉积变质型铁矿热液改造作用及其成矿意义[D]. 北京: 中国地质大学, 2013. Liu Mingjun. Hydrothermal Metasomatism and Its Metallogenic Significance of the Gongchangling Iron Deposit, Liaoning, China[D]. Beijing: China University of Geosciences, 2013.
[33] 陈随海, 韩润生, 申屠良义,等. 滇东北矿集区昭通铅锌矿区蚀变岩分带及元素迁移特征[J]. 吉林大学学报(地球科学版), 2016, 46(3): 711-721. Chen Suihai, Han Runsheng, Shentu Liangyi, et al. Alteration Zoning and Geochemical Element Migration in Alteration Rock of Zhaotong Lead-Zinc Deposit in Northeastern Yunnan Mineralization Concentration Area[J]. Journal of Jilin Universitiy (Earth Science Edition), 2016, 46(3): 711-721.
[1] 张强, 丁清峰, 宋凯, 程龙. 东昆仑洪水河铁矿区狼牙山组千枚岩碎屑锆石U-Pb年龄、Hf同位素及其地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1085-1104.
[2] 郭春涛, 李如一, 陈树民. 塔里木盆地古城地区鹰山组白云岩稀土元素地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1121-1134.
[3] 崔亚川, 于介江, 杨万志, 张元厚, 崔策, 于介禄. 东天山觉罗塔格带黄山地区角闪辉长岩岩体的年代学、地球化学特征及岩石成因[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1105-1120.
[4] 赵希林, 姜杨, 邢光福, 于胜尧, 彭银彪, 黄文成, 王存智, 靳国栋. 陈蔡早古生代俯冲增生杂岩对华夏与扬子地块拼合过程的指示意义[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1135-1153.
[5] 王朝阳, 孟恩, 李壮, 李艳广, 靳梦琪. 吉东南新太古代晚期片麻岩类的时代、成因及其对早期地壳形成演化的制约[J]. 吉林大学学报(地球科学版), 2018, 48(3): 587-625.
[6] 王运, 胡宝群, 王倩, 李佑国, 孙占学, 郭国林. 邹家山铀矿床伴生重稀土元素的赋存特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 719-735.
[7] 尹业长, 郝立波, 赵玉岩, 石厚礼, 田午, 张豫华, 陆继龙. 冀东高家店和蛇盘兔花岗岩体:年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2018, 48(2): 574-586.
[8] 齐天骄, 薛春纪, 许碧霞. 新疆昭苏布合塔铜(金)矿化区花岗质岩石锆石U-Pb年龄、地球化学特征及其成因[J]. 吉林大学学报(地球科学版), 2018, 48(1): 132-144.
[9] 孙凡婷, 刘晨, 邱殿明, 鲁倩, 贺云鹏, 张铭杰. 大兴安岭东坡小奎勒河中基性侵入岩成因及地球动力学意义:锆石U-Pb年代学、元素和Hf同位素地球化学证据[J]. 吉林大学学报(地球科学版), 2018, 48(1): 145-164.
[10] 张超, 崔芳华, 张照录, 耿瑞, 宋明春. 鲁西金岭地区含矿闪长岩体成因:来自锆石U-Pb年代学和地球化学证据[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1732-1745.
[11] 施珂, 张达玉, 丁宁, 王德恩, 陈雪锋. 皖南逍遥岩体的年代学、地球化学特征及其成因分析[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1746-1762.
[12] 谭洪旗, 刘玉平. 滇东南猛洞岩群斜长角闪岩成因及其构造意义[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1763-1783.
[13] 陈治军, 任来义, 贺永红, 刘护创, 宋健. 银额盆地哈日凹陷银根组优质烃源岩地球化学特征及其形成环境[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1352-1364.
[14] 王师捷, 徐仲元, 董晓杰, 杜洋, 崔维龙, 王阳. 华北板块北缘中段二叠纪的构造属性:来自火山岩锆石U-Pb年代学与地球化学的制约[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1442-1457.
[15] 许中杰, 蓝艺植, 程日辉, 李双林. 句容地区下奥陶统仑山组海平面变化的碳酸盐岩地球化学记录[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1458-1470.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!