吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 932-946.doi: 10.13278/j.cnki.jjuese.20180264

• 地质与资源 • 上一篇    下一篇

顺北地区中下奥陶统埋深碳酸盐岩储集体特征及成因

王昱翔1,2, 顾忆2, 傅强1, 王斌2, 万旸璐2, 李映涛3   

  1. 1. 同济大学海洋与地球科学学院, 上海 200092;
    2. 中国石油化工股份有限公司石油勘探开发研究院无锡石油地质研究所, 江苏 无锡 214126;
    3. 中国石油化工股份有限公司西北油田分公司勘探开发研究院, 乌鲁木齐 830011
  • 收稿日期:2018-10-17 出版日期:2019-07-26 发布日期:2019-07-26
  • 作者简介:王昱翔(1986-),男,在站博士后,主要从事碳酸盐岩储层地质学及分布预测研究,E-mail:306109890@qq.com
  • 基金资助:
    中国石油化工股份有限公司科技开发部项目(P15115)

Characteristics and Genesis of Deep Carbonate Reservoirs in Shunbei Area

Wang Yuxiang1,2, Gu Yi2, Fu Qiang1, Wang Bin2, Wan Yanglu2, Li Yingtao3   

  1. 1. School of Ocean and Earth Science, Tongji University, Shanghai 200092, China;
    2. Wuxi Research Institute of Petroleum Geology, Sinopec Petroleum Exploration & Production Research Institute, Wuxi 214126, Jiangsu, China;
    3. Exploration & Production Research Institute of Northwest Oilfield Company, SINOPEC, Urumqi 830011, China
  • Received:2018-10-17 Online:2019-07-26 Published:2019-07-26
  • Supported by:
    Supported by Project of Ministry of Science and Technology of China Petroleum & Chemical Corporation(P15115)

摘要: 为明确储集体特征及其成因,利用岩心及薄片观察、X衍射、物性测试、阴极发光和Sr同位素测试等技术手段对塔里木盆地顺北地区不同断裂带位置典型井碳酸盐岩储集体储集空间影响因素进行分析。研究表明,储集体岩性以砂屑泥晶灰岩、泥晶砂屑灰岩和泥晶灰岩为主,储集空间类型包括洞穴、裂缝和孔洞,充填物类型主要为方解石、沥青和石英。其中:方解石胶结最为常见、分布广泛,存在2~3期胶结;沥青和石英在不同储集空间内差异明显,前者仅在裂缝系统内充填,后者几乎全部充填于溶蚀孔洞内。顺北地区一间房组和鹰山组上段储集体类型主要为裂缝型和裂缝-孔洞型,储集体形成主要受断裂-裂缝体系和流体性质、来源及规模影响。断裂-裂缝体系直接控制裂缝型储集体的发育,可提高储集体渗透性并为流体或油气的充注提供通道,是储集体发育的主要控制因素;在断裂通道背景下,流体对储集体的溶蚀作用也会影响储集体的发育,其中碱性富钙流体对研究区储集体发育影响最大,酸性富硅和成烃流体总体规模有限,仅在局部对储集体进行改造。

关键词: 储集体成因, 储集体特征, 深埋藏碳酸盐岩, 中下奥陶统, 顺北地区

Abstract: In order to clarify the reservoir characteristics and its genesis, the factors affecting the development of carbonate reservoirs in different fault zones at the north of Shunbei area were analyzed by means of core and thin section observation, X-ray diffraction, physical property test cathodoluminescence,and Sr isotope testing. The reservoir lithology is mainly composed of bioclastic micrite limestone, micrite sandstone limestone,and micrite limestone. The reservoir space types include caves, fractures, and holes. The main type fillings are calcite, organic asphalt, and siliceous quartz, among which calcite cementation is the most common and widely distributed with 2-3 times of cementation. The difference between the fillings of asphalt and siliceous is obvious in different reservoir spaces. The former fills only in the fracture system, while the latter fills almost entirely in the dissolution cavities. The reservoir body types of Yijianfang and Yingshan Formations are mainly of fracture type and fracture-hole type. The reservoir formation is mainly affected by fault-fracture system, fluid properties, source, and scale. Fault-fracture system directly controls the development of fractured reservoir, which can improve reservoir permeability and contribute to formation through providing a channel for fluid or oil and gas filling, and is a main controlling factor for reservoir development. Under the background of fracture passage, fluid transformation also has some influences on reservoir development. Among them, alkaline calcium-rich fluid has the greatest influence on reservoir development in the study area. The overall scale of acid silicon-rich and hydrocarbon-generating fluids is limited, so only partial reservoir modification is carried out.

Key words: reservoir genesis, reservoir characteristics, deep-buried carbonate rock, Lower-Middle Ordovician, Shunbei area

中图分类号: 

  • P618.13
[1] 何治亮, 金晓辉, 沃玉进,等. 中国海相超深层碳酸盐岩油气成藏特点及勘探领域[J].中国石油勘探, 2016, 21(1):3-14. He Zhiliang, Jin Xiaohui, Wo Yujin, et al. Hydrocarbon Accumulation Characteristics and Exploration Domains of Ultra-Deep Marine Carbonates in China[J]. China Petroleum Exploration, 2016, 21(1):3-14.
[2] 马永生, 何登发, 蔡勋育,等. 中国海相碳酸盐岩的分布及油气地质基础问题[J].岩石学报, 2017, 33(4):1007-1020. Ma Yongsheng, He Dengfa,Cai Xunyu, et al. Distribution and Fundamental Science Questions for Petroleum Geology of Marine Carbonate in China[J]. Acta Petrologica Sinica, 2017,33(4):1007-1020.
[3] 漆立新. 塔里木盆地下古生界碳酸盐岩大油气田勘探实践与展望[J].石油与天然气地质, 2014, 35(6):771-779. Qi Lixin. Exploration Practice and Prospects of Giant Carbonate Field in the Lower Paleozoic of Tarim Basin[J]. Oil&Gas Geology,2014,35(6):771-779.
[4] 漆立新. 塔里木盆地顺托果勒隆起奥陶系碳酸盐岩超深层油气突破及其意义[J].中国石油勘探, 2016, 21(3):38-51. Qi Lixin. Oil and Gas Breakthrough in Ultra-Deep Ordovician Carbonate Formations in Shuntuoguole Uplift, Tarim Basin[J]. China Petroleum Exploration,2016,21(3):38-51.
[5] 焦方正. 塔里木盆地顺北特深碳酸盐岩断溶体油气藏发现意义与前景[J].石油与天然气地质, 2018,39(2):207-216. Jiao Fangzheng. Significance and Prospect of Ultra-Deep Carbonate Fault-Karst Reservoirs in Shunbei Area, Tarim Basin[J]. Oil & Gas Geology,2018,39(2):207-216.
[6] 周文,李秀华,金文辉,等.塔河奥陶系油藏断裂对古岩溶的控制作用[J].岩石学报,2011,27(8):2339-2348. Zhou Wen, Li Xiuhua, Jin Wenhui, et al. The Control Action of Fault to Paleokarst in View of Ordovician Reservoir in Tahe Area[J]. Acta Petrologica Sinica,2011,27(8):2339-2348.
[7] 鲁新便, 胡文革, 汪彦,等. 塔河地区碳酸盐岩断溶体油藏特征与开发实践[J]. 石油与天然气地质, 2015, 36(3):347-355. Lu Xinbian, Hu Wenge, Wang Yan, et al. Characteristics and Development Practice of Fault-Karst Carbonate Reservoirs in Tahe Area, Tarim Basin[J]. Oil & Gas Geology,2015,36(3):347-355.
[8] 焦方正. 塔里木盆地顺托果勒地区北东向走滑断裂带的油气勘探意义[J]. 石油与天然气地质, 2017, 38(5):831-839. Jiao Fangzheng. Significanceof Oil and Gas Exploration in NE Strike-Slip Fault Belts in Shuntuoguole Area of Tarim Basin[J]. Oil & Gas Geology,2017,38(5):831-839.
[9] 韩俊, 曹自成, 邱华标,等. 塔中北斜坡奥陶系走滑断裂带与岩溶储集体发育模式[J]. 新疆石油地质, 2016, 37(2):145-151. Han Jun, Cao Zicheng, Qiu Huabiao, et al. Model for Strike-Slip Fault Zones and Karst Reservoir Development of Ordovician in Northern Slope of Tazhong Uplift, Tarim Basin[J]. Xinjiang Petroleum Geology,2016,37(2):145-151.
[10] 傅恒, 韩建辉, 孟万斌,等. 塔里木盆地塔中北坡奥陶系碳酸盐岩岩溶储层的形成机理[J].天然气工业, 2017, 37(3):25-36. Fu Heng, Han Jianhui, Meng Wanbin, et al. Forming Mechanism of the Ordovician Karst Carbonate Reservoirs on the Northern Slope of Central Tarim Basin[J]. Natural Gas Industry, 2017, 37(3):25-36.
[11] 刘克奇, 金之钧, 吕修祥,等. 塔里木盆地塔中低凸起奥陶系碳酸盐岩油气成藏[J]. 石油实验地质, 2004, 26(6):531-536. Liu Keqi, Jin Zhijun, Lü Xiuxiang, et al. Petroleum Accumulatio in the Ordovician Carbonate Rocks in the Tazhong Loe Arch of the Tarim Basin[J]. Petroleum Geology & Experiment,2004,26(6):531-536.
[12] 黄太柱. 塔里木盆地塔中北坡构造解析与油气勘探方向[J]. 石油实验地质, 2014, 36(3):257-267. Huang Taizhu. Structural Interpretation and Petroleum Exploration Targets in Northern Slope of Middle Tari Basin[J]. Petroleum Geology & Experiment,2014, 36(3):257-267.
[13] 宁飞, 金之钧, 张仲培,等. 塔中北坡走滑断裂成因机理与油气成藏[J]. 石油与天然气地质, 2018,39(1):98-106. Ning Fei, Jin Zhijun, Zhang Zhongpei, et al. Mechanism of Strike-Slip Faulting and Hydrocarbon Accumulation in Northern Slope of Tazhong Area[J]. Oil &Gas Geology,2018,39(1):98-106.
[14] 韩晓影, 汤良杰, 曹自成,等. 塔中北坡"复合花状"构造发育特征及成因机制[J]. 地球科学, 2018,43(2):525-537. Han Xiaoying, Tang Liangjie, Cao Zicheng, et al. Characteristics and Formation Mechanism of Composite Flower Structures in Northern Slope of Tazhong Uplift, Tarim Basin[J]. Earth Science,2018,43(2):525-537.
[15] 甄素静. 塔里木盆地塔中北坡走滑断裂样式特征及其形成机理[D]. 北京:中国石油大学,2016. Zhen Sujing. Structural Characteristics and Deformation Mechanism of Strike-Fault System in Northern Slope of Middle Tarim Basin[D]. Beijing:China University of Petroleum,2016.
[16] 高志前,樊太亮,杨伟红,等. 塔里木盆地下古生界碳酸盐岩台缘结构特征及其演化[J]. 吉林大学学报(地球科学版), 2012, 42(3):657-665. Gao Zhiqian, Fan Tailiang, Yang Weihong, et al. Structure Characteristics and Evolution of the Eopaleozoic Carbonate Platform in Tarim Basin[J]. Journal of Jilin University(Earth Science Edition),2012, 42(3):657-665.
[17] 顾家裕. 塔里木盆地轮南地区下奥陶统碳酸盐岩岩溶储层特征及形成模式[J]. 古地理学报, 1999, 1(1):54-60. Gu Jiayu. Characteristics and Evolutional Model of Karst Reservoirs of Lower Ordovician Carbonate Rocks in Lunnan Area of Tarim Basin[J]. Journal of Palaeogeography,1999,1(1):54-60.
[18] 钱一雄, 邹远荣, 陈强路,等. 塔里木盆地塔中西北部多期、多成因岩溶作用地质-地球化学表征:以中1井为例[J].沉积学报,2005, 23(4):596-603. Qian Yixiong, Zou Yuanrong, Chen Qianglu, et al. Geological and Geochemical Implications for Multi-Period and Origin of Carbonate Karstification in the Northwestern Tazhong:Taking Well Zhong 1 as an Example[J]. Acta Sedimentologica Sinica,2005,23(4):596-603.
[19] 郑和荣, 刘春燕, 吴茂炳,等. 塔里木盆地奥陶系颗粒石灰岩埋藏溶蚀作用[J].石油学报, 2009, 30(1):9-15. Zheng Herong, Liu Chunyan, Wu Maobing, et al. Burial Dissolution of Ordovician Granule Limestone in Tarim Basin[J]. Acta Petrolei Sinica, 2009, 30(1):9-15.
[20] 朱光有, 张水昌, 梁英波,等. TSR对深部碳酸盐岩储层的溶蚀改造:四川盆地深部碳酸盐岩优质储层形成的重要方式[J]. 岩石学报, 2006, 22(8):2182-2194. Zhu Guangyou, Zhang Shuichang, Liang Yingbo, et al. Dissolution and Alteration of the Deep Carbonate Reservoirs by TSR:An Important Type of Deep-Buried High-Quality Carbonate Reservoirs in Sichuan Basin[J]. Acta Petrologica Sinica, 2006, 22(8):2182-2194.
[21] 刘鑫金, 冯阵东, 李聪,等. 近源湖盆砂砾岩储层次生溶孔成因探讨:以查干凹陷祥6井区为例[J]. 吉林大学学报(地球科学版), 2017, 47(2):393-404. Liu Xinjin, Feng Zhendong, Li Cong, et al. Discussion of Secondary Dissolved Pore Origin in Near Source Sandy Conglomerate Reservoir:A Case Study of Xiang 6 Well area in Chagan Depression[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(2):393-404.
[22] 李忠, 黄思静, 刘嘉庆,等. 塔里木盆地塔河奥陶系碳酸盐岩储层埋藏成岩和构造-热流体作用及其有效性[J]. 沉积学报, 2010, 28(5):969-979. Li Zhong, Huang Sijing, Liu Jiaqing, et al. Buried Diagenesis Structurally Controlled Thermal-Fluid Process and Their Effect on Ordovician Carbonate Reservoirs in Tahe Tarim Basin[J]. Acta Sedimentologica Sinica, 2010, 28(5):969-979.
[23] 高崇龙, 纪友亮, 靳军,等. 准噶尔盆地莫索湾地区清水河组深层优质储层特征及其物性控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(4):990-1006. Gao Chonglong, Ji Youliang, Jin Jun, et al. Characteristics and Controlling Factors on Physical Properties of Deep Buried Favorable Reservoirs of the Qingshuihe Formation in Muosuowan Area, Junggar Basin[J]. Journal of Jilin University(Earth Science Edition), 2017, 47(4):990-1006.
[24] 陈红汉, 鲁子野, 曹自成,等. 塔里木盆地塔中地区北坡奥陶系热液蚀变作用[J]. 石油学报, 2016, 37(1):43-63. Chen Honghan, Lu Ziye, Cao Zicheng, et al. Hydrothermal Alteration of Ordovician Reservoir in Northeastern Slope of Tazhong Uplift, Tarim Basin[J]. Acta Petrolei Sinica,2016, 37(1):43-63.
[25] 黄思静, 刘树根, 李国蓉,等. 奥陶系海相碳酸盐锶同位素组成及受成岩流体的影响[J]. 成都理工大学学报(自然科学版),2004, 31(1):1-7. Huang Sijing, Liu Shugen, Li Guorong, et al. Strontium Isotope Composition of Marine Carbonate and the Influence of Diagenetic Fluid on It in Ordovician[J]. Journal of Chengdu University of Technology (Science & Technology Edition),2004, 31(1):1-7.
[26] 谭钦银, 王瑞华, 牟传龙,等. 缝合线成因新认识[J].地学前缘, 2011, 18(3):241-249. Tan Qinyin, Wang Ruihua, Mou Chuanlong, et al. New Consideration on the Genesis of Suture[J]. Earth Science Frontiers, 2011, 18(3):241-249.
[27] 范卓颖, 林承焰, 鞠传学,等. 塔河油田二区奥陶系优势储集体特征及控制因素[J]. 吉林大学学报(地球科学版), 2017, 47(1):34-47. Fan Zhuoying, Lin Chengyan, Ju Chuanxue,et al. Characteristics of Main Ordovician Reservoir Rocks in Block Two of Tahe Oilfield[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):34-47.
[28] 陈代钊, 汪建国, 严德天,等. 扬子地区古生代主要烃源岩有机质富集的环境动力学机制与差异[J]. 地质科学, 2011, 46(1):5-26. Chen Daizhao, Wang Jianguo, Yan Detian, et al. Environmental Dynamics of Organic Accumulation for the Principal Paleozoic Source Rocks on Yangtze Block[J]. Chinese Journal of Geology, 2011, 46(1):5-26.
[29] 王小林, 万野, 胡文瑄,等. 白云石与富硅流体的水-岩反应实验及其储层地质意义[J]. 地质论评, 2017, 63(6):1639-1652. Wang Xiaolin, Wan Ye, Hu Wenxuan, et al. Experimental Studies on the Interactions Between Dolomite and SiO2 Rich Fluids:Implications for the Formation of Carbonate Reservoirs[J]. Geological Review, 2017, 63(6):1639-1652.
[30] Pokrovsky O S, Golubev S V, Schott J, et al. Calcite Dolomite and Magnesite Dissolution Kinetics in Aqueous Solutions at Acid to Circumneutral pH, 25 to 150℃ and 1 to 55 atm pCO2:New Constraints on CO2 Sequestration in Sedimentary Basins[J]. Chemical Geology, 2009, 265(1):20-32.
[31] 李映涛, 叶宁, 袁晓宇,等. 塔里木盆地顺南4井中硅化热液的地质与地球化学特征[J]. 石油与天然气地质, 2015, 36(6):934-944. Li Yingtao, Ye Ning, Yuan Xiaoyu, et al. Geological and Geochemical Characteristics of Silicified Hydrothermal Fluids in Well Shunnan 4, Tarim Basin[J]. Oil & Gas Geology, 2015, 36(6):934-944.
[32] Packard J J, Al-Aasm I, Samson I, et al. A Devonian Hydrothermal Chert Reservoir:The 225 bcf Parkland Field, British Columbia, Canada[J]. AAPG Bulletin, 2001, 85(1):51-84.
[33] Zhu D Y, Meng Q Q, Jin Z J, et al. Formation Mechanism of Deep Cambrian Dolomite Reservoirs in the Tarim Basin, Northwestern China[J]. Marine & Petroleum Geology, 2016,76(59):232-244.
[34] 卢焕章. 地球中流体研究的一些热点[J]. 地学前缘, 2001, 8(4):386-390. Lu Huanzhang. Some Recent Research Hot Points on Fluids in the Earth[J]. Earth Science Frontiers,2001,8(4):386-390.
[1] 王红岩. 丽水凹陷远岸水下扇体识别及特征分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 924-931.
[2] 孙泽飞, 史建儒, 连碧鹏, 康志帅, 申建, 杨函. 紫金山地区煤系致密砂岩储层特征及主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(4): 959-969.
[3] 牛海青, 韩小锋, 肖波, 魏建设, 张慧元, 王宝文. 中口子盆地侏罗系煤系烃源岩地球化学特征及生烃潜力评价[J]. 吉林大学学报(地球科学版), 2019, 49(4): 970-981.
[4] 李欢, 王清斌, 庞小军, 冯冲, 刘晓健. 渤海湾盆地辽东凹陷旅大29构造沙二段近源砂砾岩体优质储层形成机理[J]. 吉林大学学报(地球科学版), 2019, 49(2): 294-309.
[5] 姜大朋, 何敏, 张向涛, 彭光荣, 牛胜利, 李振升. 箕状断陷控洼断裂上下盘油气成藏差异性及勘探实践——以南海北部珠江口盆地惠州凹陷X洼为例[J]. 吉林大学学报(地球科学版), 2019, 49(2): 346-355.
[6] 张斌, 顾国忠, 单俊峰, 王璞珺, 郭强, 徐琛琛, 杨帆, 陈星州. 辽河东部凹陷新生界火成岩岩性、岩相特征和储层控制因素[J]. 吉林大学学报(地球科学版), 2019, 49(2): 279-293.
[7] 肖国林, 蔡来星, 郭兴伟, 董贺平, 庞玉茂. 北黄海盆地东部坳陷勘探突破对我国近海残留“黑色侏罗系”油气勘探的启示[J]. 吉林大学学报(地球科学版), 2019, 49(1): 115-130.
[8] 王蛟, 李智高, 蔡来星, 龚奇勇. 东海陆架盆地南部中生界沉积模式[J]. 吉林大学学报(地球科学版), 2019, 49(1): 131-138.
[9] 巩兴会, 陈琳琳, 李昆, 肖剑南. 东海陆架盆地西湖凹陷东部边缘结构解释及地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(1): 154-164.
[10] 吴志强, 张训华, 赵维娜, 祁江豪, 蔡来星. 南黄海海相油气勘探前景探讨与问题分析[J]. 吉林大学学报(地球科学版), 2019, 49(1): 26-38.
[11] 蔡来星, 肖国林, 郭兴伟, 王蛟, 吴志强, 李宝刚. 由下扬子区海陆对比分析南黄海盆地下志留统烃源岩特征及其主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 39-52.
[12] 王修齐, 滕龙, 郑红军, 方朝刚, 张训华. 下扬子丰城-乐平地区二叠系乐平组页岩气潜力综合评价[J]. 吉林大学学报(地球科学版), 2019, 49(1): 248-260.
[13] 于翠玲, 李宝刚. 渤海湾盆地东营凹陷牛庄洼陷岩性油气藏平面富集主控因素[J]. 吉林大学学报(地球科学版), 2019, 49(1): 240-247.
[14] 杨怀宇. 王家岗—八面河地区潜山残留地层发育特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1625-1634.
[15] 杨晓平, 张文龙, 汪岩, 谭红艳. 漠河盆地北部中侏罗统烃源岩有机质评价[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1635-1644.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!