吉林大学学报(地球科学版) ›› 2019, Vol. 49 ›› Issue (4): 947-958.doi: 10.13278/j.cnki.jjuese.20180049
• 地质与资源 • 上一篇
王璐1,2, 杨胜来1,2, 彭先3, 刘义成3, 徐伟3, 邓惠3
Wang Lu1,2, Yang Shenglai1,2, Peng Xian3, Liu Yicheng3, Xu Wei3, Deng Hui3
摘要: 为全面表征缝洞型碳酸盐岩气藏多类型储集层的孔隙结构特征及储渗能力,借助多种测试技术对四川盆地高石梯-磨溪地区灯四段储集层样品进行分析与研究。首先利用铸体薄片和扫描电镜技术定性刻画了储集层的岩性、物性、储集空间和喉道特征,然后根据高压压汞得到的毛管压力曲线对储集层进行分类,最后基于多尺度CT扫描定量表征了3类样品的二维、三维孔隙结构特征。结果表明:研究区储集空间既有受组构控制的粒间溶孔、粒内溶孔和晶间溶孔等,又有不受组构控制的溶洞、溶缝和构造缝;喉道以缩颈、片状和管束状为主;根据毛管压力曲线特征,储集层可划分为缝洞型、孔洞型和孔隙型;缝洞型大孔隙与溶洞发育,分布均匀且连通性好,喉道粗大且数量较多,微裂缝与溶洞串接呈串珠状分布,沟通了孤立的储集空间,具有最好的储渗能力;孔洞型多尺度孔隙与溶洞发育,储集能力强,喉道粗大但数量较少,连通性较差,各储集空间无法有效沟通,渗流能力受限;孔隙型细小孔隙发育且分布不均,大部分区域被岩石骨架占据,喉道数量少且连通性极差,储渗能力弱。
中图分类号:
[1] 贾爱林, 闫海军. 不同类型典型碳酸盐岩气藏开发面临问题与对策[J]. 石油学报, 2014,35(3):519-527. Jia Ailin, Yan Haijun. Problems and Countermeasures for Various Types of Typical Carbonate Gas Reservoirs Development[J]. Acta Petrolei Sinica, 2014, 35(3):519-527. [2] 邹才能, 杜金虎, 徐春春, 等. 四川盆地震旦系-寒武系特大型气田形成分布、资源潜力及勘探发现[J]. 石油勘探与开发, 2014, 41(3):278-293. Zhou Caineng, Du Jinhu, Xu Chunchun, et al.Formation, Distribution, Resource Potential and Discovery of the Sinian-Cambrian Giant Gas Field, Sichuan Basin, SW China[J]. Petroleum Exploration and Development, 2014, 41(3):278-293. [3] 吴胜和, 熊琦华. 油气储层地质学[M]. 北京:石油工业出版社, 1998:113-122. Wu Shenghe, Xiong Qihua. Hydrocarbon Reservoir Geology[M]. Beijing:Petroleum Industry Press, 1998:113-122. [4] 毛志强, 李进福. 油气层产能预测方法及模型[J]. 石油学报, 2000, 21(5):58-61. Mao Zhiqiang, Li Jinfu. Method and Models for Productivity Prediction of Hydrocarbon Reservoirs[J]. Acta Petrolei Sinica, 2000, 21(5):58-61. [5] 王璐, 杨胜来, 刘义成, 等. 缝洞型碳酸盐岩气藏多层合采供气能力实验[J]. 石油勘探与开发, 2017, 44(5):779-787. Wang Lu, Yang Shenglai, Liu Yicheng, et al.Experiments on Gas Supply Capability of Commingled Production in a Fracture-Cavity Carbonate Gas Reservoir[J]. Petroleum Exploration and Development, 2017, 44(5):779-787. [6] 王璐,杨胜来,刘义成,等. 缝洞型碳酸盐岩储层气水两相微观渗流机理可视化实验研究[J]. 石油科学通报, 2017, 2(3):364-376. Wang Lu, Yang Shenglai, Liu Yicheng, et al.Visual Experimental Investigation of Gas-Water Two Phase Micro Seepage Mechanisms in Fracture-Cavity Carbonate Reservoirs[J]. Petroleum Science Bulletin, 2017, 2(3):364-376. [7] Wang Lu, Yang Shenglai, Peng Xian, et al. An Improved Visual Investigation on Gas-Water Flow Characteristics and Trapped Gas Formation Mechanism of Fracture-Cavity Carbonate Gas Reservoir[J]. Journal of Natural Gas Science and Engineering, 2018, 49:213-226. [8] Wang Lu, Yang Shenglai, Meng Zhan, et al. Time-Dependent Shape Factors for Fractured Reservoir Simulation:Effect of Stress Sensitivity in Matrix System[J]. Journal of Petroleum Science and Engineering, 2018, 163:556-569. [9] 王璐, 杨胜来, 彭先,等. 缝洞型碳酸盐岩气藏多类型储层内水的赋存特征可视化实验[J]. 石油学报, 2018, 39(6):686-696. Wang Lu, Yang Shenglai, Peng Xian, et al. Visual Experiments on the Occurrence Characteristics of Multi-Type Reservoir Water in Fracture-Cavity Carbonate Gas Reservoir[J]. Acta Petrolei Sinica, 2018, 39(6):686-696. [10] 薛华庆, 胥蕊娜, 姜培学,等. 岩石微观结构CT扫描表征技术研究[J]. 力学学报, 2015, 47(6):1073-1078. Xue Huaqing, Xu Ruina, Jiang Peixue, et al. Characterization of Rock Microstructure Using 3D X-Ray Computed Tomography[J]. Chinese Journal of Theoretical and Applied Mechanics, 2015, 47(6):1073-1078. [11] Peng Ruidong, Yang Yancong, Ju Yang, et al. Computation of Fractal Dimension of Rock Pores Based on Gray CT Images[J]. Chinese Science Bulletin, 2011, 56:3346-3357. [12] Clarkson C R, Solano N, Bustin R M, et al. Pore Structure Characterization of North American Shale Gas Reservoirs Using USANS/SANS, Gas Adsorption, and Mercury Intrusion[J]. Fuel, 2013, 103:606-616. [13] 查明, 尹向烟, 姜林,等. CT扫描技术在石油勘探开发中的应用[J]. 地质科技情报, 2017,36(4):228-235. Zha Ming, Yin Xiangyan, Jiang Lin, et al. Application of CT Technology in Petroleum Exploration and Development[J]. Geological Science and Technology Information, 2017,36(4):228-235. [14] Denney D. Robust Determination of the Pore-Space Morphology in Sedimentary Rocks[J]. Journal of Petroleum Technology, 2004, 56:69-70. [15] Al-Kharusi A S, Blunt M J. Network Extraction from Sandstone and Carbonate Pore Space Images[J]. Journal of Petroleum Science and Engineering, 2007, 56:219-231. [16] Attwood D. Microscopy:Nanotomography Comes of Age[J]. Nature, 2006, 442:642. [17] 邓世冠, 吕伟峰, 刘庆杰,等. 利用CT技术研究砾岩驱油机理[J]. 石油勘探与开发, 2014, 41(3):330-335. Deng Shiguan, Lü Weifeng, Liu Qingjie, et al. Research on Displacement Mechanism in Conglomerate Using CT Scanning Method[J]. Petroleum Exploration and Development, 2014, 41(3):330-335. [18] 王明磊, 张遂安, 张福东,等. 鄂尔多斯盆地延长组长7段致密油微观赋存形式定量研究[J]. 石油勘探与开发, 2015, 42(6):757-762. Wang Minglei, Zhang Suian, Zhang Fudong, et al.Quantitative Research on Tight Oil Microscopic State of Chang 7 Member of Triassic Yanchang Formation in Ordos Basin, NW China[J]. Petroleum Exploration and Development, 2015, 42(6):757-762. [19] 杨峰, 宁正福, 胡昌蓬,等. 页岩储层微观孔隙结构特征[J]. 石油学报, 2013, 34(2):301-311. Yang Feng, Ning Zhengfu, Hu Changpeng, et al. Characterization of Microscopic Pore Structures in Shale Reservoirs[J]. Acta Petrolei Sinica, 2013, 34(2):301-311. [20] 林承焰, 王杨, 杨山, 等. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1):307-317. Lin Chengyan, Wang Yang, Yang Shan, et al. 3D Modeling of Digital Core Based on X-Ray Computed Tomography[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(1):307-317. [21] 白斌, 朱如凯, 吴松涛,等. 利用多尺度CT成像表征致密砂岩微观孔喉结构[J]. 石油勘探与开发, 2013, 40(3):329-333. Bai Bin, Zhu Rukai, Wu Songtao, et al.Multi-Scale Method of Nano(Micro)-CT Study on Microscopic Pore Structure of Tight Sandstone of Yanchang Formation, Ordos Basin[J]. Petroleum Exploration and Development, 2013, 40(3):329-333. [22] 高树生, 胡志明, 安为国,等. 四川盆地龙王庙组气藏白云岩储层孔洞缝分布特征[J]. 天然气工业, 2014, 34(3):103-109. Gao Shusheng, Hu Zhiming, An Weiguo, et al. Distribution Characteristics of Dolomite Reservoir Pores and Caves of Longwangmiao Formation Gas Reservoirs in the Sichuan Basin[J]. Natural Gas Industry, 2014, 34(3):103-109. [23] 高树生, 胡志明, 刘华勋,等. 不同岩性储层的微观孔隙特征[J]. 石油学报, 2016, 37(2):248-256. Gao Shusheng, Hu Zhiming, Liu Huaxun, et al. Microscopic Pore Characteristics of Different Lithological Reservoirs[J]. Acta Petrolei Sinica, 2016, 37(2):248-256. |
[1] | 单祥, 郭华军, 郭旭光, 邹志文, 李亚哲, 王力宝. 低渗透储层孔隙结构影响因素及其定量评价——以准噶尔盆地金龙2地区二叠系上乌尔禾组二段为例[J]. 吉林大学学报(地球科学版), 2019, 49(3): 637-649. |
[2] | 林敉若, 操应长, 葸克来, 王健, 陈洪, 吴俊军. 阜康凹陷东部斜坡带二叠系储层特征及控制因素[J]. 吉林大学学报(地球科学版), 2018, 48(4): 991-1007. |
[3] | 赵谦平, 张丽霞, 尹锦涛, 俞雨溪, 姜呈馥, 王晖, 高潮. 含粉砂质层页岩储层孔隙结构和物性特征:以张家滩陆相页岩为例[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1018-1029. |
[4] | 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252. |
[5] | 冯小龙, 敖卫华, 唐玄. 陆相页岩气储层孔隙发育特征及其主控因素分析:以鄂尔多斯盆地长7段为例[J]. 吉林大学学报(地球科学版), 2018, 48(3): 678-692. |
[6] | 林承焰, 王杨, 杨山, 任丽华, 由春梅, 吴松涛, 吴玉其, 张依旻. 基于CT的数字岩心三维建模[J]. 吉林大学学报(地球科学版), 2018, 48(1): 307-317. |
[7] | 刘忠宝, 杜伟, 高波, 胡宗全, 张钰莹, 吴靖, 冯动军. 层序格架中富有机质页岩发育模式及差异分布:以上扬子下寒武统为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 1-14. |
[8] | 李志明, 张隽, 鲍云杰, 曹婷婷, 徐二社, 芮晓庆, 陈红宇, 杨琦, 张庆珍. 沾化凹陷渤南洼陷沙一段湖相富有机质烃源岩岩石学与孔隙结构特征:以罗63井和义21井取心段为例[J]. 吉林大学学报(地球科学版), 2018, 48(1): 39-52. |
[9] | 刘丽红, 杜小弟, 徐守礼, 文华国. 四川盆地中南部寒武系白云岩特征及形成机制[J]. 吉林大学学报(地球科学版), 2017, 47(3): 775-784. |
[10] | 白永强, 刘美, 杨春梅, 姜振学. 基于AFM表征的页岩孔隙特征及其与解析气量关系[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1332-1341. |
[11] | 李易霖, 张云峰, 丛琳, 谢舟, 闫明, 田肖雄. X-CT扫描成像技术在致密砂岩微观孔隙结构表征中的应用——以大安油田扶余油层为例[J]. 吉林大学学报(地球科学版), 2016, 46(2): 379-387. |
[12] | 郑香伟, 吴健, 何胜林, 胡向阳, 梁玉楠. 基于流动单元的砂砾岩储层渗透率测井精细评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 286-294. |
[13] | 宋延杰,姜艳娇,宋杨,张依妮. 古龙南地区低阻油层胶结指数和饱和度指数影响因素实验[J]. 吉林大学学报(地球科学版), 2014, 44(2): 704-714. |
[14] | 徐胜林, 陈洪德, 陈安清, 林良彪, 李君文, 杨俊斌. 四川盆地海相地层烃源岩特征[J]. J4, 2011, 41(2): 343-350. |
[15] | 魏虎, 孙卫, 晏宁平, 刘舵. 靖边气田富水区扩大原因及控水措施[J]. J4, 2010, 40(5): 1014-1019. |
|