吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (1): 252-260.doi: 10.13278/j.cnki.jjuese.20180319

• 地球探测与信息技术 • 上一篇    

基于BP神经网络的固定翼航空电磁线圈姿态校正

朱凯光1,2, 王昊1, 彭聪1, 张琼1, 范天姣1, 景春阳1   

  1. 1. 吉林大学仪器科学与电气工程学院, 长春 130061;
    2. 地球信息探测仪器教育部重点实验室, 长春 130026
  • 收稿日期:2018-12-04 发布日期:2020-02-11
  • 作者简介:朱凯光(1970-),女,教授,博士生导师,主要从事电磁探测技术与信号处理研究,E-mail:zhukaiguang@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41674108)

Attitude Correction of Fixed-Wing Airborne Electromagnetic Coil Based on BP Neural Network

Zhu Kaiguang1,2, Wang Hao1, Peng Cong1, Zhang Qiong1, Fan Tianjiao1, Jing Chunyang1   

  1. 1. College of Instrumentation and Electrical Engineering, Jilin University, Changchun 130061, China;
    2. Key Laboratory of Geo-Exploration Instrumentation, Ministry of Education, Changchun 130026, China
  • Received:2018-12-04 Published:2020-02-11
  • Supported by:
    Supported by National Natural Science Foundation of China(41674108)

摘要: 固定翼航空电磁系统在测量过程中受风向、飞机飞行颠簸等影响,线圈姿态会发生变化,使接收到的电磁响应产生偏差。本文基于法拉第电磁感应定律,利用线圈坐标系和系统坐标系之间的转换关系,推导了线圈姿态变化时的电磁响应计算公式,得出电磁响应由线圈姿态变化过程中切割地磁场所产生的动态响应以及线圈处于倾斜状态下所感生的静态响应组成。并研究了基于BP神经网络的线圈姿态校正算法,首先利用地磁场和线圈姿态角度计算去除动态响应,然后构建BP神经网络模型,用该网络得出静态响应系数,实现静态响应校正。仿真结果表明,经过校正后的电磁响应数据质量得到很大改善。

关键词: 固定翼航空电磁系统, 线圈姿态变化, BP神经网络, 校正

Abstract: During the survey of fixed-wing airborne electromagnetic system, the transmitting and receiving coils are rotated by wind direction, flight bumpy etc., which makes the change of coil attitude,and it,in turn,causes error to receiving electromagnetic responses. Based on Faraday's law of electromagnetic induction, by using the transformation relationship between the coil coordinate system and the system coordinate system, we deduced the formula for calculating electromagnetic response,and concluded that electromagnetic response is composed of two parts:The dynamic response generated by cutting geomagnetic field in the movement process of coil and the static response induced in the sloping coil. We further studied the coil attitude correction algorithm based on BP neural network through the following steps:Firstly, the dynamic response was removed through calculation by using geomagnetic field and coil attitude angle,then BP neural network model was constructed, and the static response was corrected by using of the static response coefficient obtained in the network. The simulation results show that the quality of the corrected electromagnetic response data is greatly improved.

Key words: fixed-wing airborne electromagnetic system, change of coil attitude, BP neural network, correction

中图分类号: 

  • P631
[1] 殷长春,张博,刘云鹤,等. 航空电磁勘查技术发展现状及展望[J].地球物理学报,2015,58(8):2637-2653. Yin Changchun, Zhang Bo, Liu Yunhe, et al. Review on Airborne EM Technology and Developments[J]. Chinese Journal of Geophysics, 2015, 58(8):2637-2653.
[2] 朱凯光,李玥,孟洋, 等. 最小噪声分离在航空电磁数据噪声压制中的应用[J].吉林大学学报(地球科学版),2016,46(3):876-883. Zhu Kaiguang, Li Yue, Meng Yang, et al. Application of Minimum Noise Fraction on Noise Removal for Airborne Electromagnetic Data[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(3):876-883.
[3] 梁盛军,张力卡,曹学峰,等. 时间域航空电磁法研究进展综述[J].地质与勘探,2014,50(4):735-740. Liang Shengjun, Zhang Lika, Cao Xuefeng, et al.Research Progress of the Time-Domain Airborne Electromagnetic Method[J]. Geology and Exploration, 2014, 50(4):735-740.
[4] Annan A P. Effect of Differential Transmitter/Receiver Motion on Airborne Transient EM Interpretation[J]. Seg Technical Program Expanded Abstracts, 1983, 2(1):670.
[5] Son K H. Interpretation of Electromagnetic Dipole-Dipole Frequency Sounding Data over a Vertically Stratified Earth[D]. Raleigh:North Carolina State University, 1985:53-58.
[6] Holladay J S, Lo B,Prinsenberg S K. Bird Orientation Effects in Quantitative Airborne Electromagnetic Interpretation of Pack Ice Thickness Sounding[C]//Proceedings of the MTS/IEEE Conference Proceedings Oceans'97. Halifax:IEEE, 1997:1114-1116.
[7] Fitterman D V. Sources of Calibration Errors in Helicopter EM Data[J]. Exploration Geophysics, 1998, 29(2):65-70.
[8] Yin C, Fraser D C.Attitude Corrections of Helicopter EM Data Using a Superposed Dipole Model[J]. Geophysics, 2004, 69(2):431-439.
[9] Fitterman D V, Yin C. Effect of Bird Maneuver on Frequency-Domain Helicopter EM Response[J]. Geophysics, 2004, 69(5):1203-1215.
[10] Kratzer T, Vrbancich J. Real-Time Kinematic Tracking of Towed AEM Birds[J]. Exploration Geophysics, 2007, 38(2):132-143.
[11] Davis A C,Macnae J, Robb T. Pendulum Motion in Airborne HEM Systems[J]. Exploration Geophysics, 2006, 37(4):355-362.
[12] 嵇艳鞠,林君,关珊珊,等. 直升机航空TEM中心回线线圈姿态校正的理论研究[J].地球物理学报,2010,53(1):171-176. Ji Yanju, Lin Jun, Guan Shanshan, et al. Theoretical Study of Concentric Loop Coils Attitude Correction in Helicopter-Borne TEM[J]. Chinese Journal of Geophysics, 2010, 53(1):171-176.
[13] 王琦,林君,于生宝,等. 固定翼航空电磁系统的线圈姿态及吊舱摆动影响研究与校正[J].地球物理学报,2013, 56(11):3741-3750. Wang Qi, Lin Jun, Yu Shengbao, et al.Study on Influence and Correction of Coil Attitude and Bird Swing for the Fixed-Wing Time-Domain Electromagnetic System[J]. Chinese Journal of Geophysics, 2013, 56(11):3741-3750.
[14] 贲放,黄威,吴珊,等. 时间域航空电磁系统姿态变化影响研究[J].地球物理学报,2018, 61(7):3074-3085. Ben Fang,Huang Wei, Wu Shan, et al. Influence of Attitude Change for Time Domain Airborne Electromagnetic System[J]. Chinese Journal of Geophysics, 2018, 61(7):3074-3085.
[15] 罗延钟,张胜业,王卫平. 时间域航空电磁法一维正演研究[J].地球物理学报,2003,46(5):719-724. Luo Yanzhong, Zhang Shengye, Wang Weiping. A Research on One-Dimension Forward for Aerial Electromagnetic Method in Time Domain[J]. Chinese Journal of Geophysics, 2003, 46(5):719-724.
[16] 高斌,赵鹏飞,卢昱欣,等. 基于BP神经网络的血液荧光光谱识别分类研究[J].光谱学与光谱分析,2018, 38(10):3136-3143. Gao Bin, Zhao Pengfei, Lu Yuxin, et al.Recognition and Classification of Blood Fluorescence Spectrum Based on BP Neural Network[J]. Spectroscopy and Spectral Analysis, 2018, 38(10):3136-3143.
[17] 费扬,杜庆治. 基于BP神经网络模型的RSSI测距方法研究[J].电波科学学报,2018,33(2):195-201. Fei Yang, Du Qingzhi. RSSI Ranging Method Based on BP Neural Network Model[J]. Chinese Journal of Radio Science, 2018, 33(2):195-201.
[18] 朱凯光,林君,韩悦慧, 等.基于神经网络的时间域直升机电磁数据电导率深度成像[J].地球物理学报,2010, 53(3):743-750. Zhu Kaiguang, Lin Jun, Han Yuehui, et al.Research on Conductivity Depth Imaging of Time Domain Helicopter-Borne Electromagnetic Data Based on Neural Network[J]. Chinese Journal of Geophysics, 2010, 53(3):743-750.
[19] 徐黎明,王清,陈剑平,等. 基于BP神经网络的泥石流平均流速预测[J].吉林大学学报(地球科学版),2013, 43(1):186-191. Xu Liming, Wang Qing, Chen Jianping, et al. Forecast for Average Velocity of Debris Flow Based on BP Neural Network[J]. Journal of Jilin University (Earth Science Edition), 2013, 43(1):186-191.
[1] 王新月, 刘杰, 孙澎勇, 陈科, 李军. 基于车载重力测量平台的城市地下空洞快速探测[J]. 吉林大学学报(地球科学版), 2019, 49(3): 837-844.
[2] 张代磊, 黄大年, 张冲. 基于遗传算法优化的BP神经网络在密度界面反演中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 580-588.
[3] 孙成禹, 谢俊法, 张立, 张小美, 李世安. 利用多次波和二维匹配滤波的近偏移距数据重构方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 224-233.
[4] 姜艳娇, 孙建孟, 高建申, 邵维志, 迟秀荣, 柴细元. 低孔渗储层井周油藏侵入模拟及阵列感应电阻率校正方法[J]. 吉林大学学报(地球科学版), 2017, 47(1): 265-278.
[5] 韩凯, 郑智杰, 甘伏平, 陈贻祥, 陈玉玲. 利用多源大功率充电法定位复杂岩溶含水通道的方法[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1501-1510.
[6] 徐言, 姜琦刚. 基于6S模型的MODIS影像逐像元大气校正及其应用[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1547-1553.
[7] 王卫平, 曾昭发, 李静, 吴成平. 频率域航空电磁法地形影响和校正方法[J]. 吉林大学学报(地球科学版), 2015, 45(3): 941-951.
[8] 王宇, 卢文喜, 卞建民, 侯泽宇. 三种地下水位动态预测模型在吉林西部的应用与对比[J]. 吉林大学学报(地球科学版), 2015, 45(3): 886-891.
[9] 吴健, 胡向阳, 梁玉楠, 汤翟, 郑香伟. 珠江口盆地低阻油层饱和度评价方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 312-319.
[10] 黄绍霖,徐涵秋,王琳. CPF变化对Landsat TM/ETM+辐射校正结果的影响[J]. 吉林大学学报(地球科学版), 2014, 44(4): 1382-1387.
[11] 袁园,黄大年,余青露,耿美霞. 全张量重力梯度数据误差分析及补偿[J]. 吉林大学学报(地球科学版), 2014, 44(3): 1003-1011.
[12] 徐黎明,王清,陈剑平,潘玉珍. 基于BP神经网络的泥石流平均流速预测[J]. 吉林大学学报(地球科学版), 2013, 43(1): 186-191.
[13] 辛治国, 侯加根, 冯伟光. 密闭取心饱和度校正数学模型[J]. J4, 2012, 42(3): 698-704.
[14] 周永恒, 李守义, 张璟, 徐山. 基于地质背景分析的区域化探数据系统误差校正[J]. J4, 2011, 41(3): 753-758.
[15] 周晓华, 林君, 陈祖斌, 焦健, 郭同健. 改进的神经网络反演微动面波频散曲线[J]. J4, 2011, 41(3): 900-906.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!