吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (4): 1228-1239.doi: 10.13278/j.cnki.jjuese.20190216

• 地球探测与信息技术 • 上一篇    

微地震震源定位方法综述

达姝瑾1,2, 李学贵1,3, 董宏丽1,2, 李含阳1,2   

  1. 1. 东北石油大学复杂系统与先进控制研究院, 黑龙江 大庆 163318;
    2. 黑龙江省网络化与智能控制重点实验室, 黑龙江 大庆 163318;
    3. 东北石油大学计算机与信息技术学院, 黑龙江 大庆 163318
  • 收稿日期:2019-10-12 发布日期:2020-07-29
  • 通讯作者: 李学贵(1982-),男,副教授,博士,主要从事深度学习、计算智能、微地震监测方面的研究,E-mail:lixg82@163.com E-mail:lixg82@163.com
  • 作者简介:达姝瑾(1991-),女,硕士研究生,主要从事微地震定位和深度学习方面的研究,E-mail:dsj_0601@163.com
  • 基金资助:
    国家自然科学基金项目(61873058);中国石油科技创新基金项目(2018D-5007-0302);黑龙江省自然科学基金项目(F2018005);黑龙江省博士后基金项目(LBH-Z18045);东北石油大学优秀中青年创新团队基金项目(KYCXTD201903);东北石油大学青年科学基金项目(2019QNL-56)

Summary of Microseismic Location Methods

Da Shujin1,2, Li Xuegui1,3, Dong Hongli1,2, Li Hanyang1,2   

  1. 1. Institute of Complex Systems and Advanced Control, Northeast Petroleum University, Daqing 163318, Heilongjiang, China;
    2. Heilongjiang Provincial Key Laboratory of Networking and Intelligent Control, Daqing 163318, Heilongjiang, China;
    3. College of Computer and Information Technology, Northeast Petroleum University, Daqing 163318, Heilongjiang, China
  • Received:2019-10-12 Published:2020-07-29
  • Supported by:
    Supported by National Natural Science Foundation of China (61873058),PetroChina Innovation Foundation (2018D-5007-0302),Heilongjiang Natural Science Foundation (F2018005),Heilongjiang Post-Doctoral Assistance (LBH-Z18045),Excellent Young and Middle-Aged Innovation Team Foundation of Northeast Petroleum University (KYCXTD201903) and Youth Science Foundation of Northeast Petroleum University (2019QNL-56)

摘要: 微地震震源定位方法是微地震监测领域的一项核心技术,而考量微地震技术应用效果好坏的准则在于震源定位方法的精确程度。针对非常规油气开发过程中微地震震源定位方法的应用,本文对微地震震源定位方法进行阐述。其中:几何作图法具有稳健、效率高的优势,但震源位置较深时定位精度较低;线性定位法无需速度模型精度,但对初至拾取的精度有较大影响;非线性定位法对初至拾取较为敏感,对速度模型的精度要求较高,但计算量较小;混合优化定位法在一定程度上提高了定位的精度和效率,但在低信噪比、速度模型精度较低时优势不明显;基于波形偏移的定位方法无需考虑初至拾取的精度,但计算量较大;基于神经网络的定位方法采用训练网络进行训练,定位精度高,误差小。同时,本文还介绍了多方法多参数信息融合技术在油气藏微震震源定位中的应用。

关键词: 微地震, 多信息融合, 微地震震源定位, 非常规油气开发

Abstract: Microseismic positioning method is a core technology in the field of microseismic monitoring, and the criterion to consider the application effect of microseismic technology lies in the accuracy of the source positioning method. Given the application of unconventional oil and gas development in microseismic positioning, the authors expound on the microseismic positioning methods. Among them, the geometric mapping method has the advantages of robustness and high efficiency, but its positioning accuracy is low when the source location is deep; the linear positioning method does not need the accuracy of the velocity model, but has a great impact on the accuracy of first break pick-up; the nonlinear positioning method is more sensitive to first break picking and requires higher accuracy of the velocity model, but the calculation is small; the hybrid positioning method improves the positioning accuracy and efficiency to a certain extent, but the advantages are not obvious when the signal-to-noise ratio is low,and the speed model precision is not high; the positioning method based on waveform migration does not need to consider the precision of first break pick-up, but the calculation is large; the positioning method based on neural network using training network training is highly accurate, and the error is small. The authors also discuss the application of multi-method and multi-parameter information fusion technology in microseismic location of oil and gas reservoir.

Key words: microseismic, multi-information fusion, microseismic source location, unconventional oil and gas development

中图分类号: 

  • P631.4
[1] Cheng Y, Jiang F, Zhang X, et al. C-Shaped Strata Spatial Structure and Stress Field Inlongwall Face Monitored by Microseismic Monitoring[J]. Chinese Journal of Rock Mechanics & Engineering, 2007, 26(1):102-107.
[2] Grigoli F, Cesca S, Amoroso O, et al. Automated Seismic Event Location by Waveform Coherence Analysis[J]. Geophysical Journal International, 2014, 196(3):1742-1753.
[3] Maxwell S, Deere J. An Introduction to This Special Section:Microseismic[J]. The Leading Edge, 2010, 29(3):227-235.
[4] Feng G L, Feng X T, Chen B R, et al. A Microseismic Method for Dynamic Warning of Rockburst Development Processes in Tunnels[J]. Rock Mechanics & Rock Engineering, 2015, 48(5):2061-2076.
[5] 刘建中, 王春耘, 刘继民,等. 用微地震法监测油田生产动态[J]. 石油勘探与开发, 2004, 31(2):71-73. Liu Jianzhong, Wang Chunyun, Liu Jimin,et al. Using Microseismic Method to Monitor Oil Field Production Performance[J]. Petroleum Exploration and Development, 2004, 31(2):71-73.
[6] 刘高峰, 翁红波, 宋志敏,等. 煤层气井水力压裂效果评价与消突时间预测研究[J]. 河南理工大学学报(自然科学版), 2015, 34(6):753-758. Liu Gaofeng, Weng Hongbo, Song Zhimin, et al. Evaluation of Hydraulic Fracturing Effect and Prediction of Outburst Elimination Time for CBM Wells[J]. Journal of Henan University of Technology (Natural Science Edition), 2015, 34(6):753-758.
[7] Myers S C, Johannesson G, Hanley W. A Bayesian Hierarchical Method for Multiple-Event Seismic Location[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 171(3):1049-1063.
[8] 廉超, 李胜乐, 董曼,等. 球面交切法地震定位[J].大地测量与地球动力学, 2006, 26(2):99-103. Lian Chao, Li Shengle, Dong Man, et al. Seismic Location by Spherical Intersection Method[J]. Geodesy and Geodynamics, 2006, 26(2):99-103.
[9] 周建超, 赵爱华. 三维复杂速度模型的交切法地震定位[J]. 地球物理学报, 2012,55(10):3347-3354. Zhou Jianchao, Zhao Aihua. Intersection Seismic Location of Three-Dimensional Complex Velocity Model[J]. Journal of Geophysics, 2012, 55(10):3347-3354.
[10] 毛元彤. 三维各向异性介质地震波走时计算与地震定位的方法研究[D].北京:中国地震局物理研究所,2019. Mao Yuantong. Research on Travel Time Calculation and Seismic Location Methods of Three-Dimensional Anisotropic Media[D]. Beijing:Institute of Physics China Seismological Bureau, 2019.
[11] Geiger L. Probability Method for the Determination of Earthquake Epicenters from Arrival Time Only[J]. Bull St Louis Univ, 1912, 8(1):60-71.
[12] 张宇, 康建红, 张晨侠,等. 采用LOCSAT和HYPOSAT方法对东北深源地震定位分析[J]. 地震地磁观测与研究, 2014, 35(3/4):96-99. Zhang Yu, Kang Jianhong, Zhang Chenxia, et al.Location and Analysis of Deep-Focus Earthquakes in Northeast China Using LOCSAT and HYPOSAT Methods[J]. Seismic and Geomagnetic Observation and Research, 2014, 34(3/4):96-99.
[13] Zhang H, Thurber C. Double-Difference Tomography:The Method and Its Application to the Hayward Fault, California[J]. Bulletin of the Seismological Society of America, 2003, 93(5):1875-1889.
[14] Guo H, Zhang H. Development of Double-Pair Double Difference Earthquake Location Algorithm for Improving Earthquake Locations[J].Geophysical Journal International, 2017, 208(1):333-348.
[15] Waldhauser F, Ellsworth W. A Double-Difference Earthquake Location Algorithm:Method and Application to the Northern Hayward Fault[J]. Bulletin of the Seismological Society of America, 2000,90(6):1353-1368.
[16] Tian X, Zhang W, Zhang J. Cross Double-Difference Inversion for Simultaneous Velocity Model Update and Microseismic Event Location[J]. Geophysical Prospecting, 2017, 65(5):259-273.
[17] Gauthier O, Virieux J, Tarantola A. Two-Dimensional Nonlinear Inversion of Seismic Waveforms:Numerical Results[J]. Geophysics, 1986, 51(7):1387-1403.
[18] 霍凤斌. 混沌模拟退火算法在储层参数反演中的应用[D]. 成都:成都理工大学, 2007. Huo Fengbin. Application of Chaotic Simulated Annealing Algorithms in Inversion of Reservoir Parameters[D]. Chengdu:Chengdu University of Technology, 2007.
[19] Prugger A F, Gendzwill D. Comment on "Microearthquake Location:A Nonlinear Approach that Makes Use of a Simplex Stepping Procedure"[J]. Bulletin of the Seismological Society of America, 1995(1):375-377.
[20] 李健, 高永涛, 谢玉玲,等. 基于无需测速的单纯形法微地震定位改进研究[J]. 岩石力学与工程学报, 2014, 33(7):1336-1346. Li Jian, Gao Yongtao, Xie Yuling, et al. Improvement of Microseismic Location Based on Simplex Method Without Velocity Measurement[J]. Journal of Rock Mechanics and Engineering, 2014, 33(7):1336-1346.
[21] Liao Y C, Kao H, Rosenberger A, et al. Delineating Complex Spatiotemporal Distribution of Earthquake Aftershocks:An Improved Source-Scanning Algorithm[J]. Geophysical Journal International, 2012, 189(3):1753-1770.
[22] Lu R, Lazaratos S, Wang K, et al. High-Resolution Elastic FWI for Reservoir Characterization[C]//EAGE Technical Program Expanded Abstracts. London:SEG, 2013:10-12.
[23] 王纪程. 基于网格剖分的微地震地面监测定位技术研究[D].长春:吉林大学,2018. Wang Jicheng. Research on Micro-Seismic Ground Monitoring and Location Technology Based on Grid Division[D]. Changchun:Jilin University, 2018.
[24] 王云宏. 基于DIRECT算法的微震震源快速网格搜索定位方法研究[J]. 地球物理学进展,2016,31(4):1700-1708. Wang Yunhong. Research on Fast Grid Search and Location Method of Microseismic Source Based on DIRECT Algorithm[J]. Progress in Geophysics, 2016, 31(4):1700-1708.
[25] Zhang M, Wen L. An Effective Method for Small Event Detection:Match and Locate[J]. Geophysical Journal International, 2015, 200(3):1523-1537.
[26] Eberhart R, Kennedy J. Particle Swarm Optimization[C]//Proceedings of the IEEE International Conference on Neural Networks. Piscataway:[s. n.], 1995:1942-1948.
[27] Clerc M. The Swarm and the Queen:Towards a Deterministic and Adaptive Particle Swarm Optimization[C]//Congress on Evolutionary Computation. Piscataway:[s. n.], 2002:1951-1957.
[28] Zurada J M, Marks I R J, Robinson C J, et al. Computational Intelligence Imitating Life[M]. New York:IEEE Press, 1994:213-222.
[29] 陈淑珍, 谢秋洪, 刘怀林. 基于遗传算法的弯曲射线成像反演[J]. 工程地球物理学报, 2004, 1(2):141-144. Chen Shuzhen, Xie Qiuhong, Liu Huailin. Bending Ray Imaging Inversion Based on Genetic Algorithm[J]. Journal of Engineering Geophysics, 2004, 1(2):141-144.
[30] 王泉栋, 李国和, 吴卫江,等. 多种群遗传算法在微震震源定位中的应用[J]. 计算机测量与控制, 2015, 23(4):1285-1288. Wang Quandong, Li Guohe, Wu Weijiang, et al.Application of Multi-Population Genetic Algorithms in Focal Location of Micro-Earthquakes[J].Computer Measurement and Control, 2015, 23(4):1285-1288.
[31] 王剑锋,李天斌,马春驰,等. 基于引力搜索法的隧道围岩微震定位研究[J]. 岩土力学,2019, 40(11):1-10. Wang Jianfeng, Li Tianbin, Ma Chunchi, et al.Microseismic Location of Tunnel Surrounding Rock Based on Gravity Search Method[J]. Geotechnical Mechanics, 2019, 40(11):1-10.
[32] 周运波.微震监测反演方法研究[D]. 荆州:长江大学, 2012. Zhou Yunbo. Research on Inversion Method of Microseismic Monitoring[D]. Jingzhou:Changjiang University, 2012.
[33] Li G M, Chen J Y, Han M, et al. Accurate Microseismic Event Location Inversion Using a Gradient-Based Method[C]//The SPE Annual Technical Conference and Exhibition. Texas:[s. n.], 2012:159187.
[34] Thurber C H. Nonlinear Earthquake Location:Theory and Examples[J]. Bulletin of the Seismological Society of America, 1985, 75(3):779-790.
[35] Powell M J. An Efficient Method for Finding the Minimum of a Function of Several Variables Without Using Derivatives[J]. The Computer Journal, 1963, 7(7):155-162.
[36] 宋维琪, 刘军, 陈伟,等. 改进射线追踪算法的微震源反演[J]. 物探与化探, 2008, 32(3):274-278. Song Weiqi, Liu Jun, Chen Wei, et al.Microseismic Source Inversion Based on Improved Ray Tracing Algorithm[J]. Geophysical and Geochemical Exploration, 2008, 32(3):274-278.
[37] 崔仁胜, 陈阳, 王洪体,等. 基于DFP算法的小尺度微震定位方法研究[J]. 震灾防御技术, 2014, 9(增刊1):639-647. Cui Rensheng, Chen Yang, Wang Hongti, et al. Small-Scale Microseismic Location Method Based on DFP Algorithm[J]. Earthquake Disaster Prevention Technology, 2014, 9(Sup.1):639-647.
[38] Cary P W, Chapman C H. Automatic 1-D Waveform Inversion of Marine Seismic Refraction Data[J]. Geophysical Journal, 1988, 93(3):527-546.
[39] 王纪程, 陈祖斌, 江海宇,等. 基于极快速模拟退火与网格逐次剖分的微地震定位算法[J]. 科学技术与工程, 2017, 17(33):254-258. Wang Jicheng, Chen Zubin, Jiang Haiyu, et al.Microseismic Localization Algorithm Based on Extremely Fast Simulated Annealing and Grid Successive Subdivision[J]. Science and Technology and Engineering, 2017, 17(33):254-258.
[40] 林峰, 李庶林, 薛云亮,等. 基于不同初值的微震源定位方法[J]. 岩石力学与工程学报, 2009,29(5):996-1002. Lin Feng, Li Shulin, Xue Yunliang, et al. Microseismic Source Location Method Based on Different Initial Values[J]. Journal of Rock Mechanics and Engineering, 2009, 29(5):996-1002.
[41] 王心强. 地面微地震事件的反演定位研究[D].青岛:中国石油大学(华东), 2012. Wang Xinqiang. Inversion and Location of Surface Microseismic Events[D]. Qingdao:China University of Petroleum (East China), 2012.
[42] 张院生, 高永涛, 王喆,等. 基于SA-PSO混合算法的微震定位研究[J]. 现代隧道技术, 2016, 53(3):137-145. Zhang Yuansheng, Gao Yongtao, Wang Zhe, et al. Microseismic Location Research Based on SA-PSO Hybrid Algorithm[J]. Modern Tunnel Technology, 2016, 53(3):137-145.
[43] 盛冠群, 李振春, 王维波,等. 水力压裂微地震粒子群差分进化定位算法[J]. 石油学报, 2014, 35(6):1172-1181. Sheng Guanqun, Li Zhenchun, Wang Weibo, et al.Differential Evolutionary Particle Swarm Optimization Algorithm for Micro-Earthquake in Hydraulic Fracturing[J]. Journal of Petroleum, 2014, 35(6):1172-1181.
[44] Rentsch S, Buske S, Lüth S, et al. Fast Location of Seismicity:A Migration-Type Aapproach with Application to Hydraulic-Fracturing Data[J].Geophysics,2007, 72(1):S33-S40.
[45] Gajewski D, Tessmer E. Reverse Modelling for Seismic Event Characterization[J]. Geophysical Journal of the Royal Astronomical Society, 2010, 163(1):276-284.
[46] Gajewski D J, Anikiev D V, Kashtan B M, et al. Localization of Seismic Events by Diffraction Stacking[J]. SEG Technical Program Expanded Abstracts, 2007, 26(1):9355-9362.
[47] 吴建光, 张平, 吕昊,等. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1):255-264. Wu Jianguang, Zhang Ping, Lü Hao, et al. Application of Microseismic Event Location Based on Amplitude Superposition in Ground Monitoring[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(1):255- 264.
[48] 何勇, 张建中, 李同宇. 改进的震源扫描定位方法[J]. 中国科技论文, 2016, 11(21):2450-2455. He Yong, Zhang Jianzhong, Li Tongyu. Improved Focal Scanning Location Method[J]. Chinese Science and Technology Paper, 2016, 11(21):2450-2455.
[49] Kao H, Shan S. The Source-Scanning Algorithm:Mapping the Distribution of Seismic Sources in Time and Space[J]. Geophys, 2004, 157:589-594.
[50] Kao H, Shan S J, Dragert H, et al. A Wide Depth Distribution of Seismic Tremors Along the Northern Cascadia Margin[J]. Nature, 2005, 436:841-844.
[51] Sava P. Micro-Earthquake Monitoring with Sparsely Sampled Data[J]. Journal of Petroleum Exploration & Production Technologies, 2011, 1(1):43-49.
[52] 许力生, 杜海林, 严川, 等. 一种确定震源中心的方法:逆时成像技术原理与数值实验[J]. 地球物理学报, 2013, 56(4):1190-1206. Xu Lisheng, Du Hailin, Yan Chuan, et al. A Method for Determining Focal Center:Principle and Numerical Experiment of Reverse-Time Imaging Technology[J]. Journal of Geophysics, 2013, 56(4):1190-1206.
[53] Li L, Chen H, Wang X. Weighted-Elastic-Wave Interferometric Imaging of Microseismic Source Location[J]. Applied Geophysics, 2015, 12(2):221-234.
[54] Nakata N, Beroza G C. Reverse Time Migration for Microseismic Sources Using the Geometric Mean as an Imaging Condition[J].Geophysics,2016,81(2):KS51-KS60.
[55] 李青峰,张建中.基于分组互相关成像条件的微震逆时成像定位方法[J].地球物理学进展, 2019,34(1):125-135. Li Qingfeng, Zhang Jianzhong. Microseismic Inversion Imaging Positioning Method Based on Grouped Cross-Correlation Imaging Conditions[J]. Progress in Geophysics, 2019, 34(1):125-135.
[56] Wu S J, Wang Y B, Zheng Y K, et al. Microseismic Source Locations with Deconvolution Migration[J]. Geophysical Journal International, 2018, 212(3):2088-2115.
[57] 徐克彬, 陈祖斌, 刘玉海,等. 基于L-M算法的微地震定位方法[J]. 石油地球物理勘探, 2018, 53(4):765-769. Xu Kebin, Chen Zubin, Liu Yuhai, et al.Microseismic Location Method Based on L-M Algorithm[J]. Petroleum Geophysical Exploration, 2018, 53(4):765-769.
[58] 李学政, 雷军. 神经网络方法在爆炸地震震中定位方面的应用[J]. 地震地质, 1999, 21(1):77-82. Li Xuezheng, Lei Jun. Application of Neural Network Method in Locating the Epicenter of Explosive Earthquakes[J]. Seismology, 1999, 21(1):77-82.
[59] Bose M, Wenzel F, Erdik M. PreSEIS:A Neural Network-Based Approach to Earthquake Early Warning for Finite Faults[J]. Bulletin of the Seismological Society of America, 2008, 98(1):366-382.
[60] Llinas J, Hall D L. An introduction to Multi-Sensor Data Fusion[J]. Geophysical Journal International, 1998, 85(1):6-23.
[61] 韩增奇,于俊杰,李宁霞, 等. 信息融合技术综述[J]. 情报杂志, 2010, 29(增刊1):110-114. Han Zengqi, Yu Junjie, Li Ningxia, et al.Overview of Information Fusion Technology[J]. Intelligence Journal, 2010, 29(Sup.1):110-114.
[62] 李绍红, 朱建东, 白兰英, 等. 联合信息融合和解析方法的微震源定位研究[J]. 煤炭学报,2018,43(4):1065-1071. Li Shaohong, Zhu Jiandong, Bai Lanying, et al. Joint Information Fusion and Analysis for Micro-Focal Location[J]. Journal of Coal Mine, 2018, 43(4):1065-1071.
[1] 代丽艳, 董宏丽, 李学贵. 微地震数据去噪方法综述[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1145-1159.
[2] 吴建光, 张平, 吕昊, 曾晓献. 基于震幅叠加的微地震事件定位在地面监测中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 255-264.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!