吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1340-1357.doi: 10.13278/j.cnki.jjuese.20190294

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件

张连昌1,2,3, 张帮禄1,2,3, 董志国1,2,3, 谢月桥4, 李文君1,2,3, 彭自栋1,2,3, 朱明田1,2,3, 王长乐1,2,3   

  1. 1. 中国科学院地质与地球物理研究所/中国科学院矿产资源研究重点实验室, 北京 100029;
    2. 中国科学院地球科学研究院, 北京 100029;
    3. 中国科学院大学, 北京 100049;
    4. 新疆维吾尔自治区地质矿产勘查开发局第二地质大队, 新疆 喀什 844000
  • 收稿日期:2019-12-21 出版日期:2020-09-26 发布日期:2020-09-29
  • 作者简介:张连昌(1959-),男,研究员,博士,主要从事矿床地质和地球化学研究,E-mail:lczhang@mail.iggcas.ac.cn
  • 基金资助:
    国家自然科学基金项目(U1703242);中国地质调查局项目(DD20190166-19)

Tectonic Setting and Metallogenetic Conditions of Carboniferous Malkansu Giant Manganese Belt in West Kunlun Orogen

Zhang Lianchang1,2,3, Zhang Banglu1,2,3, Dong Zhiguo1,2,3, Xie Yueqiao4, Li Wenjun1,2,3, Peng Zidong1,2,3, Zhu Mingtian1,2,3, Wang Changle1,2,3   

  1. 1. Key Laboratory of Mineral Resources/Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing 100029, China;
    2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. No.2 Geological Party of the Xinjiang Bureau of Geo-Exploration and Mineral Development, Kashgar 844000, Xinjiang, China
  • Received:2019-12-21 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by National Natural Science Foundation of China(U1703242) and Project of China Geological Survey (DD20190166-19)

摘要: 西昆仑北段玛尔坎苏地区探明的大型碳酸锰成矿带,是我国近年最重要的找矿成果之一。该锰矿带构造上属北昆仑晚古生代弧后伸展盆地,其构造动力学背景为古特提斯洋向北俯冲于塔里木地块之下形成的弧盆体系。锰矿体主要发育于晚石炭世喀拉阿特河组含炭泥质灰岩夹薄层灰岩中。矿石中主要金属矿物为菱锰矿(75%~95%),次为软锰矿、硫锰矿及少量黄铁矿等。含锰岩系岩性和岩相学研究表明,玛尔坎苏锰矿带属典型的海相沉积锰矿床,其矿床成因可能与晚古生代半局限盆地沉积和海底热液活动有关。海底热液活动可能为成矿提供了丰富的物质来源。含锰岩系元素和同位素地球化学特征表明,玛尔坎苏锰矿沉淀时的水体环境为常氧条件,而矿层下盘(部分)岩系的岩性及地球化学特征反映其沉积时的水体环境为低氧—贫氧条件。玛尔坎苏锰矿带锰矿石具有负的δ13C值(-23.3‰~-10.0‰),推测有机质导致的还原作用是该锰矿由原生氧化锰在成岩期转化为菱锰矿和形成富锰矿的重要机制。

关键词: 沉积碳酸锰矿床, 石炭纪, 构造背景, 成矿条件, 成矿模式, 玛尔坎苏锰矿带, 西昆仑

Abstract: The large scale Carboniferous Malkansu manganese carbonate metallogenic belt in west Kunlun orogen is one of the most important prospecting achievement in China. The belt belongs to the back-arc extension basin of north Kunlun in Late Paleozoic. The basin was formed in the subduction of paleo Tethys Ocean beneath the Tarim plate. The Mn orebody is hosted by the marine sedimentary sequence of the Upper Carboniferous Kalaatehe Formation. The ore is composed of rhodochrosite (75%-95%), pyrolusite, alabandite, and pyrite. Based on petrographic and lithologic studies, it is suggested that the Upper Carboniferous Kalaratehe Formation represents sedimentary sequence of back-arc basin. Based on trace elements, C isotopes(δ13C=-23.3‰--10.0‰), it is suggested that the ore-forming condition of the Carboniferous Malkansu manganese ore body is normoxic . It is speculated that the dissimilatory reduction of manganese oxides in combination with organic matter resulted in the precipitation of manganese carbonates.

Key words: sedimentary manganese carbonate deposit, Carboniferous, tectonic setting, ore-forming condition, metallogenic model, Malkansu manganese ore belt, west Kunlun orogen

中图分类号: 

  • P612
[1] Maynard J B. The Chemistry of Manganese Ores Through Time:A Signal of Increasing Diversity of Earth-Surface Environments[J]. Economic Geology, 2010, 105(3):535-552.
[2] Cairncross B, Beukes N J. The Kalahari Manganese Field[M]. Assore:Johannesburg, 2013:1-336.
[3] Frakes L A, Bolton B R. Origin of Manganese Giants:Sea-Level Change and Anoxic-Oxic History[J]. Geology, 1984, 12(2):83-86.
[4] Frakes L, Bolton B. Effects of Ocean Chemistry, Sea-Level, and Climate on the Formation of Primary Sedimentary Manganese Ore-Deposits[J]. Economic Geology, 1992, 87(5):1207-1217.
[5] Okita P M. Manganese Carbonate Mineralization in the Molango District, Mexico[J]. Economic Geology, 1992, 87(5):1345-1366.
[6] Yu W C, Algeo T J, Du Y S, et al. Genesis of Cryogenian Datangpo Manganese Deposit:Hydrothermal Influence and Episodic Post-Glacial Ventilation of Nanhua Basin, South China[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2016, 459:321-337.
[7] 杨瑞东, 高军波, 程玛莉, 等. 贵州从江高增新元古代大塘坡组锰矿沉积地球化学特征[J]. 地质学报, 2010, 84(12):1781-1790. Yang Ruidong, Gao Junbo, Cheng Mali, et al. Sedimentary Geochemistry of Manganese Deposit of the Neoproterozoic Datangpo Formation in Guizhou Province, China[J]. Acta Geologica Sinica, 2010, 84(12):1781-1790.
[8] 余文超, 杜远生, 周琦, 等. 黔东松桃南华系大塘坡组锰矿层物源:来自Sr同位素的证据[J]. 地球科学:中国地质大学学报, 2016, 41(7):1110-1120. Yu Wenchao, Du Yuansheng, Zhou Qi, et al. Provenance of Nanhua Datangpo Formation Manganese Deposit in Songtao Area, East Guizhou Province:Evidence from Sr Isotope[J]. Earth Scinence:Journal of China University of Geosciences, 2016, 41(7):1110-1120.
[9] 朱祥坤, 彭乾云, 张仁彪, 等. 贵州省松桃县道坨超大型锰矿床地质地球化学特征[J]. 地质学报, 2013, 87(9):1335-1348. Zhu Xiangkun, Peng Qianyun, Zhang Renbiao, et al. Geological and Geochemical Characteristics of the Daotuo Super-Large Manganese Ore Deposit at Songtao County in Guizhou Province[J]. Acta Geologica Sinica, 2013, 87(9):1335-1348.
[10] Beukes N J, Swindell E P W, Wabo H. Manganese Deposits of Africa[J]. Episodes, 2016, 39(2):285-317.
[11] Fan D L, Liu T B, Ye J. The Process of Formation of Manganese Carbonate Deposits Hosted in Black Shale series[J]. Economic Geology, 1992, 87(5):1419-1429.
[12] Fan D L, Yang P J. Introduction to and Classification of Manganese Deposits of China[J]. Ore Geology Reviews, 1999, 15(1/2/3):1-13.
[13] Xiao J F, He J Y, Yang H Y, et al. Comparison Between Datangpo-Type Manganese Ores and Modern Marine Ferromanganese Oxyhydroxide Precipitates Based on Rare Earth Elements[J]. Ore Geology Reviews, 2017, 89:290-308.
[14] 付勇, 徐志刚, 裴浩翔, 等. 中国锰矿成矿规律初探[J]. 地质学报, 2014, 88(12):2192-2207. Fu Yong, Xu Zhigang, Pei Haoxiang, et al. Study on Metallogenic Regularity of Manganese Ore Deposits in China[J]. Acta Geologica Sinica, 2014, 88(12):2192-2207.
[15] 姚培慧, 林镇泰, 杜春林, 等. 中国锰矿志[M].北京:冶金工业出版社,1995:1-541. Yao Peihui, Lin Zhentai, Du Chunlin, et al. Records of China's Manganese Ore Deposits[M]. Beijing:Metallurgical Industry Press, 1995:1-541.
[16] 叶连俊. 中国锰矿的沉积条件[J]. 科学通报, 1955, 11:93-96. Ye Lianjun. Sedimentary Conditions of Manganese Deposits in China[J]. Chinese Science Bulletin, 1955, 11:93-96.
[17] 阴江宁, 肖克炎. 中国锰矿资源潜力分析及成矿预测[J]. 中国地质, 2014, 41(5):1424-1437. Yin Jiangning, Xiao Keyan. Resources Potential Analysis and Metallogenic Prospect of Mn Resources in China[J]. Geology in China, 2014, 41(5):1424-1437.
[18] 查斌, 张连昌, 张帮禄, 等. 新疆阿克陶穆呼锰矿成矿地质特征[J]. 新疆地质, 2018, 36(3):357-364. Zha Bin, Zhang Lianchang, Zhang Banglu, et al. Geology Characteristic of Muhu Manganese Deposit in Aketao, Xinjiang[J]. Xinjiang Geology, 2018, 36(3):357-364.
[19] 查斌, 张连昌, 张帮禄, 等. 新疆阿克陶玛尔坎苏锰成矿带地质特征及成矿条件分析[J]. 新疆地质, 2019, 37(1):79-88. Zha Bin, Zhang Lianchang, Zhang Banglu, et al. Geology Characteristic and Metallogenic Conditions of the Manganese Ore Belt in Malkansu, Aketao, Xinjiang[J]. Xinjiang Geology, 2019, 37(1):75-88.
[20] 陈登辉, 隋清霖, 赵晓健, 等. 西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境[J]. 沉积学报, 2019, 37(3):477-490. Chen Denghui, Sui Qinglin, Zhao Xiaojian, et al. Geology, Geochemical Characteristics, and Sedimentary Environment of Mn-Bearing Carbonate from the Late Carboniferous Muhu Manganese Deposit in West Kunlun[J]. Acta Sedimentologica Sinica, 2019, 37(3):477-490.
[21] 高永宝,滕家欣,陈登辉,等. 新疆西昆仑玛尔坎苏锰矿带成矿地质特征及找矿方向[J].西北地质,2017, 50(1):261-269. Gao Yongbao, Teng Jiaxin, Cheng Denghui, et al. Metallogenic Geological Characteristics and Prospecting Direction of Malkansu Manganese Ore Belt in West Kunlun, Xinjiang[J]. Northwestern Geology, 2017, 50(1):261-269.
[22] 高永宝, 滕家欣, 李文渊, 等. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 2018, 34(8):2341-2358. Gao Yongbao, Teng Jiaxin, Li Wenyuan, et al. Geology, Geochemistry and Ore Genesis of the Aoertuokanashi Manganese Deposit, West Kunlun, Xinjiang, Northwest China[J]. Acta Petrologica Sinica, 2018, 34(8):2341-2358.
[23] 张帮禄, 张连昌, 冯京, 等. 西昆仑玛尔坎苏地区奥尔托喀讷什大型碳酸锰矿床地质特征及成因探讨[J]. 地质论评, 2018, 64(2):361-377. Zhang Banglu, Zhang Lianchang, Feng Jing, et al. Genesis of the Large-Scale Orto Karnash Manganese Carbonate Deposit in the Malkansu District, Western Kunlun:Evidence from Geological Features[J]. Geological Review, 2018, 64(2):361-377.
[24] 张连昌, 冯京, 朱明田, 等. 西昆仑沉积型铁锰矿床地质特征及成矿演化[J]. 矿床地质, 2016, 35(增刊2):241-242. Zhang Lianchang, Feng Jing, Zhu Mingtian, et al. Geological Characteristics and Metallogenic Evolution of Sedimentary Iron-Manganese Deposits in West Kunlun[J]. Mineral Deposits, 2016, 35(Sup. 2):241-242.
[25] 潘裕生. 西昆仑山构造特征与演化[J]. 地质科学, 1990, 25(3):224-232. Pan Yusheng. Tectonic Features and Evolution of the Western Kunlun Mountain Region[J]. Scientia Geologica Sinica, 1990, 25(3):224-232.
[26] 潘裕生, 方爱民. 中国青藏高原特提斯的形成与演化[J]. 地质科学, 2010, 45(1):92-101. Pan Yusheng, Fang Aimin. The Formation and Evolution of Tethys in the Tibetan Plateau of China[J]. Scientia Geologica Sinica, 2010, 45(1):92-101.
[27] 姜春发, 王宗起, 李锦轶. 中央造山带开合构造[M]. 北京:地质出版社, 2000:47-68. Jiang Chunfa, Wang Zongqi, Li Jinyi. The Open-Tectonic of Central China Orogenic Belt[M]. Beijing:Geological Publishing House, 2000:47-68.
[28] 曾忠诚,边小卫,张若愚,等.西昆仑塔什库尔干下-中侏罗统龙山组沉积构造背景分析[J].吉林大学学报(地球科学版), 2019, 49(4):1039-1052. Zeng Zhongcheng, Bian Xiaowei, Zhang Ruoyu, et al.Tectonic Setting of Lower-Middle Jurassic Longshan Formation in Taxkoegan Area, West Kunlun[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4):1039-1052.
[29] 潘桂棠, 陈智樑, 李兴振, 等. 东特提斯多弧-盆系统演化模式[J]. 岩相古地理, 1996, 16(2):52-65. Pan Guitang, Chen Zhiliang, Li Xingzhen, et al. Evolution Model of the Poly Arc-Basin Systems in Eastern Tethys[J]. Lithofacies Paleogeography, 1996, 16(2):52-65.
[30] 张连昌, 冯京, 董连慧, 等. 西昆仑塔什库尔干铁矿带矿床类型、成因及成矿规律[J]. 地球科学与环境学报, 2016, 38(4):427-443. Zhang Lianchang, Feng Jing, Dong Lianhui, et al. Deposit Types, Origin and Metallogenetic Regularity of Taxkorgan Iron Ore Belt in West Kunlun[J]. Journal of Earth Science and Environment, 2016, 38(4):427-443.
[31] Zheng M T, Wang C L, Zhang L C, et al. Geological and Geochemical Constraints on the Origin of the Early Cambrian Kalaizi SEDEX Fe-Ba Deposit in Western Kunlun, NW China[J]. Ore Geology Reviews, 2018, 100:347-359.
[32] Li Z Q, Zhang L C, Kurt K, et al. Geological Characteristics, Formation Age and Geochemistry of the Jiertieke Banded Iron Deposit in the West Kunlun Mountains[J]. Journal of Asian Earth Sciences, 2019, 173:143-160.
[33] 毛红伟. 西昆仑北缘主乌鲁克锰矿床地质特征及成因探讨[J]. 地质找矿论丛, 2019, 34(1):72-77. Mao Hongwei. Geological Feature and Origin of Zhuwuluke Mn Deposit on the North Margin of West Kunlun Orogen[J]. Geological Prospecting Symposium, 2019, 34(1):72-77.
[34] Mattern F, Schneider W. Suturing of the Proto-and Paleo-Tethys Oceans in the Western Kunlun (Xinjiang, China)[J]. Journal of Asian Earth Sciences, 2002, 18:637-650.
[35] 张正伟, 彭建堂, 肖加飞, 等. 塔西南缘沉积岩层控型铅-锌矿带区域构造控矿作用[J]. 矿物岩石地球化学通报, 2009, 28(4):318-329. Zhang Zhengwei, Peng Jiantang, Xiao Jiafei, et al. Regional Metallotectonics of the Lead-Zinc Deposit Zone in Southwestern Margin of Tarim Plate[J]. Bulletin of Mineralogy, Petrology and Geochemistry, 2009, 28(4):318-329.
[36] 计文化, 陈守建, 李荣社. 等. 西昆仑昆盖山北坡铜矿化点的地质特征及其找矿意义[J]. 地质通报, 2009, 28(9):1361-1367. Ji Wenhua, Chen Shoujian, Li Rongshe, et al. Geological Feature of Copper Mineralization and Its Ore-Prospecting Significance in Kungai Mountains, West Kunlun, China[J]. Geological Bulletin of China, 2009, 28(9):1361-1367.
[37] 贾群子, 李文明, 于浦生, 西昆仑块状硫化物矿床成矿条件和成矿预测[M]. 北京:地质出版社, 2000:1-160. Jia Qunzi, Li Wenming, Yu Pusheng. The Ore-Forming Condition and Prediction of Massive Sulfide Deposit in Western Kunlun Orogen[M]. Beijing:Geological Publishing House, 2000:1-160.
[38] 覃英, 温官国, 李代平. 新疆西昆仑阿克陶地区优质富锰矿的发现及意义[J]. 西部探矿工程, 2014, 26(8):112-115. Qin Ying, Wen Guanguo, Li Daiping. Giscovery and Its Significances of High-Grade Manganese Ore Deposit in Aketao County, Xinjiang Province[J]. Western Prospecting Project, 2014, 26(8):112-115.
[39] 祝新友, 汪东波, 王书来. 西昆仑海相火山岩及其有关大型铜矿成矿前景的初步分析[J]. 地质论评, 1999, 45(增刊1):995-1001. Zhu Xinyou, Wang Dongpo, Wang Shulai. The Characteristics of Marine Volcanic Rocks and the Prospect of the Exploring for Copper Deposits in Western Kunlun, Xinjiang[J]. Geologcal Review, 1999, 45(Sup. 1):995-1001.
[40] 计文化, 陈守建, 李荣社, 等. 西昆仑奥依塔格石炭-二叠纪岩浆岩:弧后盆地的产物?[J]. 岩石学报, 2018, 34(8):2393-2409. Ji Wenhua, Chen Shoujian, Li Rongshe, et al. The Origin of Carboniferous-Permian Magmatic Rocks in Oytag Area, West Kunlun:Back-Arc Basin?[J]. Acta Petrologica Sinica, 2018, 34(8):2393-2409.
[41] 贠杰, 高晓峰, 校培喜, 等. 西昆仑下石炭统乌鲁阿特组火山岩地球化学特征及地质意义[J]. 中国地质, 2015, 42(3):587-600. Yun Jie, Gao Xiaofeng, Xiao Peixi, et al. Geochemical Characteristics of the Lower Carboniferous Volcanic Rocks of the Wuluate Formation in the Western Kunlun Mountains and Their Geological Significance[J]. Geology in China, 2015,42(3):587-600.
[42] Stampfli G M, Hochard C, Vérard C, et al. The Formation of Pangea[J]. Tectonophysics, 2013, 593:1-19.
[43] Wolf K H. Stratabound Ore Deposit and Bedded Deposit[M]. Beijing:Geological Publishing House,1980.
[44] Tsikos H, Beukes N J, Moore J M, et al. Deposition, Diagenesis, and Secondary Enrichment of Metals in the Paleoproterozoic Hotazel Iron Formation, Kalahari Manganese Field, South Africa[J]. Economic Geology,2003, 98(7):1449-1462.
[45] Urban H, Stribrny B, Lippolt H J. Iron and Manganese Deposits of the Urucum Mistrict, Mato Grosso do Sul, Brazil[J]. Economic Geology, 1992, 87(5):1375-1392.
[46] Huckriede H, Meischner D. Origin and Environment of Manganese-Rich Sediments Within Black-Shale Basins[J]. Geochimica et Cosmochimica Acta, 1996, 60(8):1399-1413.
[47] Polgári M, Okita P M, Hein J R. Stable Isotope Evidence for the Origin of the Úrkút Manganese Ore Deposit, Hungary[J]. Journal of Sedimentary Petrology, 1991, 61(3):384-393.
[48] 杨胜堂, 禚喜准, 陈骁帅, 等. 黔东北大塘坡组菱锰矿矿床控矿因素研究[J]. 矿床地质, 2016, 35(5):1062-1072. Yang Shengtang, Zhuo Xizhun, Chen Xiaoshuai, et al. Ore-Controlling Factors of Rhodochrosite Ore Bed from Datangpo Formation in Northeast Guizhou[J]. Mineral Deposits, 2016, 35(5):1062-1072.
[49] 周琦, 杜远生, 袁良军, 等. 黔湘渝毗邻区南华纪武陵裂谷盆地结构及其对锰矿的控制作用[J]. 地球科学:中国地质大学学报, 2016, 41(2):177-188. Zhou Qi, Du Yuansheng, Yuan Liangjun, et al. The Structure of the Wuling Rift Basin and Its Control on the Manganese Deposit During the Nanhua Period in Guizhou-Hunan-Chongqing Border Area, South China[J]. Earth Scinence:Journal of China University of Geosciences, 2016, 41(2):177-188.
[50] 冯京, 张连昌, 郝延海,等. 西昆仑塔什库尔干铁金属地质与成矿规律[M]. 北京:地质出版社, 2019:1-203. Feng Jing, Zhang Lianchang, Hao Yanhai,et al. The Geology and Ore-Forming Regularity of Tashigugan Iron Metallogenic Belt[M]. Beijing:Geological Publishing House, 2019:1-203.
[51] 荆德龙, 贺永康, 滕家欣, 等. 新疆木吉乡琼巴额什沟一带锰矿的发现及其地质意义[J]. 西北地质, 2018, 51(1):277-279. Jing Delong, He Yongkang, Teng Jiaxin, et al. The Discovery and Geological Significance of Manganese Ore in Qiongkaneshigou Area, Muji Township, Xinjiang[J]. Northwestern Geology, 2018, 51(1):277-279.
[52] Collier R, Edmond J. The Trace-Element Geochemistry of Marine Biogenic Particulate Matter[J]. Progress in Oceanography, 1984, 13(2):113-199.
[53] Glasby G P. Manganese Deposition Through Geological Time:Dominance of the Post-Eocene Deep-Sea Environment[J]. Ore Geology Reviews, 1988, 4(1):135-143.
[54] Roy S. Genetic Diversity of Manganese Deposition in the Terrestrial Geological Record[J]. Geological Society London Special Publications, 1997, 119(1):5-27.
[55] Derry L A, Jacobsen S B. The Chemical Evolution of Precambrian SeawaterL Evidence from Rees in Banded Iron Formations[J]. Geochimica et Cosmochimica Acta, 1990, 54(11):2965-2977.
[56] 秦元奎, 张华成, 姚敬劬. 广西大新县下雷锰矿床的地球化学特征及其意义[J]. 地质论评, 2010, 56(5):664-672. Qin Yuankui, Zhang Huacheng, Yao Jingqu. Geochemical Characteristics and Geological Implication of the Xialei Manganese Deposit, Daxin County, Guangxi[J]. Geological Review, 2010, 56(5):664-672.
[57] 吴承泉, 程远, 张正伟, 等. 贵州东部及邻区南华纪锰矿中黄铁矿硫同位素高异常及地质意义[J]. 地球化学, 2015, 44(3):213-214. Wu Chengquan, Cheng Yuan, Zhang Zhengwei, et al. Geological Implications of Ultra-High δ34S Values of Pyrite in Manganese Deposits of Nanhua Period in Eastern Guizhou and Sdjacent Areas, China[J]. Geochemica, 2015, 44(3):213-224.
[58] Berner R A. A New Geochemical Classification of Sedimentary Environments[J]. Journal of Sedimentary Petrology, 1981, 51(2):359-365.
[59] Roy S. Sedimentary Manganese Metallogenesis in Response to the Evolution of the Earth System[J]. Earth-Science Reviews, 2006, 77(4):273-305.
[60] Calvert S E, Pedersen T F. Sedimentary Geochemistry of Manganese:Implications for the Environment of Formation of Manganiferous Black Shales[J]. Economic Geology, 1996, 91(1):36-47.
[61] Force E R, Maynard J B. Manganese:Syngenetic Deposits on the Margins of Anoxic Basins[C]//Force E R, Eidel J J, Maynard J B. Sedimentary and Diagenetic Mineral Deposits:A Basin Analysis Approach to Exploration. Littleton:Society of Economic Geologists, 1991:147-159.
[62] Jones B, Manning D A C. Comparison of Geochemical in Used Dices for the Interpretation of Palaeoredox Conditions in Ancient Mudstones[J]. Chemical Geology, 1994, 111:111-129.
[63] Tribovillard N, Algeo T J, Lyons T, et al. Trace Metals as Paleoredox and Paleoproductivity Proxies:An Update[J]. Chemical Geology, 2006, 232(1):12-32.
[64] 周炼, 苏洁, 黄俊华, 等. 判识缺氧事件的地球化学新标志:钼同位素[J]. 中国科学:地球科学, 2011, 41(3):309-319. Zhou Lian, Su Jie, Huang Junhua, et al. A New Paleoenvironmental Index for Anoxic Events:Mo Isotopes in Black Shales from Upper Yangtze Marine Sediments[J]. Science in China:Earth Science, 2011, 41(3):309-319.
[65] Pedersen T, Calvert S. Anoxia vs Productivity:What Controls the Formation of Organic-Carbon-Rich Sediments and Sedimentary Rocks?[J]. Am Assoc Petroleum Geologists Bull, 1990, 74(4):454-466.
[66] 范德廉, 张焘, 叶杰. 缺氧环境与超大矿床的形成[J]. 中国科学:D辑, 1998, 28(增刊1):57-62. Fan Delian, Zhang Tao, Ye Jie. Anaerobic Environment and Formation of Super-Large Deposit[J]. Science in China:Series D, 1998, 28(Sup. 1):57-62.
[67] 温汉捷, 张羽旭, 樊海峰, 等. 华南下寒武统地层的Mo同位素组成特征及其古海洋环境意义[J]. 科学通报, 2010, 55(2):176-181. Wen Hanjie, Zhang Yuxu, Fan Haifeng, et al. Mo Isotopes in the Lower Cambrian Formation of Southern China and Its Implications on Paleo-Ocean Environment[J].Chinese Science Bulletin, 2009, 54:4756-4762.
[68] 徐林刚, Bernd L. 钼及钼同位素地球化学:同位素体系、测试技术及在地质中的应用[J]. 矿床地质, 2011, 30(1):103-124. Xu, Lingang, Bernd L. Mo and Mo Stable Isotope Geochemistry:Isotope System, Analytical Technique and Applications to Geology[J]. Mineral Deposits, 2011, 30(1):103-124.
[69] Du Q D, Yi H S, Hui B, et al. Recognition, Genesis and Evolution of Manganese Ore Deposits in Southeastern China[J]. Ore Geology Reviews, 2013, 55:99-109.
[70] Johnson J E, Webb S M, Ma C, et al. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record[J]. Geochimica et Cosmochimica Acta, 2016, 173:210-231.
[71] 唐云凤, 伊海生. 滇东南地区斗南沉积型锰矿床矿物相变化及沉积模式[J]. 中国地质, 2011, 38(2):451-461. Tang Yunfeng, Yin Haisheng. Mineral Phase Changes and Depositional Model of Sedimentary Manganese Deposits in Dounan Area of Southeastern Yunnan[J]. Geology in China, 2011, 38(2):451-461.
[72] Meister P, Bernasconi S M, Aiello I W, et al. Depth and Controls of Ca-Rhodochrosite Precipitation in Bioturbated Sediments of the Eastern Equatorial Pacific, ODP Leg 201, Site 1226 and DSDP Leg 68, Site 503[J]. Sedimentology, 2009, 56(5):1552-1568.
[73] Maynard J B. Manganiferous Sediments, Rocks, and Ores[C]//Holland H D, Turekian K K. Treatise on Geochemistry. 2nd ed. Oxford:Elsevier, 2014:327-349.
[74] Li C, Love G D, Lyons T W, et al. Evidence for a Redox Stratified Cryogenian Marine Basin, Datangpo Formation, South China[J]. Earth and Planetary Science Letters, 2012, 331:246-256.
[75] Okita P M, Maynard J B, Spiker E C, et al. Isotopic Evidence for Organic Matter Oxidation by Manganese Reduction in the Formation of Stratiform Manganese Carbonate Ore[J]. Geochimica et Cosmochimica Acta, 1988, 52(11):2679-2685.
[76] Wu C Q, Zhang Z W, Xiao J F, et al. Nanhuan Manganese Deposits Within Restricted Basins of the Southeastern Yangtze Platform, China:Constraints from Geological and Geochemical Evidence[J]. Ore Geology Reviews, 2016, 75:76-99.
[77] Zhang B L, Wang C L, Robbins L J, et al. Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in Western Kunlun Mountains of Xinjiang Province, China:Implications for the Depositional Environment and Manganese Carbonate Mineralization[J]. Economic Geology, 2020. doi:10.5382/econgeo.4729.
[1] 董志国, 张连昌, 董飞羽, 张帮禄, 谢月桥, 查斌, 彭自栋, 王长乐. 西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1358-1372.
[2] 刘忠, 陈海锋, 张怀东, 王波华. 安徽金寨沙坪沟整装勘查区铅锌矿“三位一体”成矿特征及找矿预测[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1539-1551.
[3] 葛海龙, 张艳, 王圣柱, 杨凯凯, 刘晓康, 边伟华. 西准噶尔萨吾尔地区吉木乃组火山岩锆石U-Pb年代学、地球化学特征及构造背景[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1075-1089.
[4] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[5] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[6] 施璐, 唐振, 郑常青, 秦涛, 张立东, 汪岩, 钱程, 杨帆. 大兴安岭中部柴河地区晚侏罗世花岗质岩石成因及构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(1): 112-128.
[7] 曾忠诚, 边小卫, 张若愚, 孔文年, 陈宁, 赵端昌, 赵江林. 西昆仑塔什库尔干下-中侏罗统龙山组沉积构造背景分析[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1039-1052.
[8] 高福红, 何雨思, 王枫, 修铭. 黑龙江省东部早古生代晨明组物源区特征及其构造背景[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1725-1740.
[9] 尹志刚, 李海娜, 张海, 郝科, 庞学昌, 宫兆民, 李敏, 张圣听. 大兴安岭加格达奇东北部花岗岩类形成时代、地球化学特征及成因[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1741-1755.
[10] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070.
[11] 张立敏, 王岳军, 张玉芝, 刘汇川, 张新昌. 海南岛北部古生界时代:碎屑锆石U-Pb年代学约束[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1187-1206.
[12] 项新葵, 尹青青, 詹国年, 曲凯, 刘行, 谭荣, 钟波. 江西大湖塘北区石门寺矿段钨矿成矿条件与找矿预测[J]. 吉林大学学报(地球科学版), 2017, 47(3): 645-658.
[13] 吴迪, 庄廷新, 田立, 刘晓东, 李伟民. 辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(2): 452-463.
[14] 李福来, 肖飞, 孟凡超, 任泽樱. 内蒙古索伦地区上二叠统林西组碎屑岩地球化学特征及其对物源的指示意义[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1769-1780.
[15] 王晰, 段明新, 任云生, 侯召硕, 孙德有, 郝宇杰. 内蒙古额尔古纳地区八大关铜钼矿床流体包裹体特征与成矿时代[J]. 吉林大学学报(地球科学版), 2016, 46(5): 1354-1367.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. J4, 2007, 37(1): 15 -0023 .
[2] 崔建军, 刘晓春, 胡娟, 曲玮. 桐柏杂岩中印支期变质岩包体的变质作用[J]. J4, 2009, 39(4): 618 -629 .
[3] 张晓飞, 李智明, 贾群子, 宋忠宝, 陈向阳, 张雨莲, 李东生, 舒晓峰. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 749 -765 .
[4] 程先钰, 李以科, 董满华, 曹侃. 阿拉善右旗特拜金矿赋矿地层时代厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1565 -1577 .
[5] 王德海, 孟祥化, 郭峰, 任国选, 葛铭. 天津蓟县高于庄组微亮晶(MT)碳酸盐岩的沉积环境及成因探讨[J]. J4, 2009, 39(6): 1023 -1030 .
[6] 张允平. 东北亚地区晚侏罗-白垩纪构造格架主体特点[J]. J4, 2011, 41(5): 1267 -1284 .
[7] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲. 全球早古生代造山带(Ⅱ):俯冲-增生型造山[J]. 吉林大学学报(地球科学版), 2016, 46(4): 968 -1004 .
[8] 冯慧,吴昌志,郑远川,顾连兴,蒋少涌,孙洪涛,高龙. 燕辽成矿带养马甸斑岩型钼矿成矿岩体的年代学、地球化学及成岩成矿环境[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1711 -1729 .
[9] 吴迪, 庄廷新, 田立, 刘晓东, 李伟民. 辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(2): 452 -463 .
[10] 吴和源, 赵宗举, 汪建国, 王培玺, 龚发雄, 肖飞. 华北克拉通北缘寒武系层序地层划分[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1609 -1624 .