吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1358-1372.doi: 10.13278/j.cnki.jjuese.20190295

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

西昆仑穆呼锰矿床地质特征、控矿因素及成矿模式

董志国1,2,3, 张连昌1,2,3, 董飞羽1,2,3, 张帮禄1,2,3, 谢月桥4, 查斌4, 彭自栋1,2, 王长乐1,2   

  1. 1. 中国科学院地质与地球物理研究所/中国科学院矿产资源研究重点实验室, 北京 100029;
    2. 中国科学院地球科学研究院, 北京 100029;
    3. 中国科学院大学, 北京 100049;
    4. 新疆地质矿产勘查开发局第二地质大队, 新疆 喀什 844000
  • 收稿日期:2019-12-21 出版日期:2020-09-26 发布日期:2020-09-29
  • 通讯作者: 张连昌(1959-),男,研究员,主要从事矿床地质和地球化学方面的研究,E-mail:lczhang@mail.iggcas.ac.cn E-mail:lczhang@mail.iggcas.ac.cn
  • 作者简介:董志国(1994-),男,博士研究生,主要从事沉积型锰矿床方面的研究,E-mail:dongzhiguo@mail.iggcas.ac.cn
  • 基金资助:
    国家自然科学基金项目(U1703242);国家重点研发计划项目(2018YFC0604001);中国地质调查局项目(DD20190166-19)

Geological Characteristics, Ore-Controlling Factors and Metallogenic Model of Muhu Manganese Deposit in West Kunlun, China

Dong Zhiguo1,2,3, Zhang Lianchang1,2,3, Dong Feiyu1,2,3, Zhang Banglu1,2,3, Xie Yueqiao4, Zha Bin4, Peng Zidong1,2, Wang Changle1,2   

  1. 1. Key Laboratory of Mineral Resources, Institute of Geology and Geophysics, Chinese Academyof Sciences, Beijing 100029, China;
    2. Innovation Academy for Earth Science, Chinese Academy of Sciences, Beijing 100029, China;
    3. University of Chinese Academy of Sciences, Beijing 100049, China;
    4. No.2 Geological Party of the Xinjiang Bureau of Geology and Mineral Resources and Development, Kashi 844000, Xinjiang, China
  • Received:2019-12-21 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (U1703242),National Key Research and Development Program of China (2018YFC0604001) and Mineral Survey Project of China Geological Survey (DD20190166-19)

摘要: 穆呼锰矿床位于西昆仑造山带玛尔坎苏锰矿带东段,研究程度相对薄弱。穆呼锰矿床的含矿地层为上石炭统喀拉阿特河组,自下而上可分为角砾灰岩、钙质杂砂岩和含炭质泥灰岩3个岩性段,具有完整的海侵层序特征,反映了由逐步断陷到稳定沉积的盆地演化过程。锰矿层赋存于第三岩性段炭质泥灰岩中,矿石矿物主要为化学组分纯净的泥晶菱锰矿。根据详细的矿相学观察并综合前人研究成果,笔者认为菱锰矿是初始沉淀的锰(氢)氧化物与有机质通过成岩反应形成的。这种成矿机制需要3个基本条件:丰富的锰质来源、氧化还原分层的海水和有机质的大量埋藏。在穆呼一带,有利于满足以上条件的主要控矿因素包括:伸展拉张的构造背景、强烈的海底热液活动、海侵事件和温暖潮湿的古气候。笔者根据w(Ba)-w(P2O5)图解并结合区域对比分析,初步认为穆呼锰矿床的成矿模式可能属于最小含氧量带扩张型。

关键词: 成矿模式, 控矿因素, 菱锰矿, 穆呼锰矿床, 玛尔坎苏锰矿带, 西昆仑造山带

Abstract: Muhu manganese deposit is located in the eastern end of Malkansu manganese ore belt in the west Kunlun orogenic belt, and research for this deposit is relatively weak. The ore-bearing strata of Muhu manganese deposit is the Upper Carboniferous Kalaatehe Formation, which can be divided into three members from the bottom to the top: Breccia limestone, calcareous greywacke, and carbonaceous marlstone. This typical transgressive sequence reflects the basin evolution from gradual faulting to stable sedimentation. The manganese orebodies occur in carbonaceous marlstone in the upper part of Kalaatehe Formation, and are mainly composed of fine-grained pure rhodochrosite. Based on the detailed mineralogical observation and the previous research advance, we suggest that the rhodochrosite in Muhu formed as a result of manganese oxides reduction by organic matter during burial diagenetic reaction. Three basic conditions are needed for this metallogenic mechanism: Abundant manganese source, redox stratified basin, and large burial of organic matter. In Muhu area, the main favorable ore-controlling factors include extensional tectonic background, strong submarine hydrothermal activities, transgressive event, and warm-humid paleoclimate. Based on the w(Ba)-w(P2O5) diagram and regional comparative analysis, we consider that the oxygen minimum zone expansion model can explain the genesis of Muhu manganese deposit.

Key words: metallogenic model, ore-controlling factors, rhodochrosite, Muhu manganese deposit, Malkansu manganese ore belt, west Kunlun orogen

中图分类号: 

  • P618.32
[1] 付勇, 徐志刚, 裴浩翔, 等. 中国锰矿成矿规律初探[J]. 地质学报, 2014, 88(12):2192-2207. Fu Yong, Xu Zhigang, Pei Haoxiang, et al. Study on Metallogenic Regularity of Manganese Ore Deposits in China[J]. Acta Geologica Sinica, 2014, 88(12):2192-2207.
[2] 阴江宁, 肖克炎. 中国锰矿资源潜力分析及成矿预测[J]. 中国地质, 2014, 41(5):1424-1437. Yin Jiangning, Xiao Keyan. Resources Potential Analysis and Metallogenic Prospect of Mn Resources in China[J]. Geology in China, 2014, 41(5):1424-1437.
[3] 高永宝, 滕家欣, 陈登辉, 等. 新疆西昆仑玛尔坎苏锰矿带成矿地质特征及找矿方向[J]. 西北地质, 2017, 50(1):261-269. Gao Yongbao, Teng Jiaxin, Chen Denghui, et al. Metallogenic Geological Characteristics and Prospecting Direction of Malkansu Manganese Ore Belt in West Kunlun, Xinjiang[J]. Northwestern Geology, 2017, 50(1):261-269.
[4] 高永宝, 滕家欣, 李文渊, 等. 新疆西昆仑奥尔托喀讷什锰矿地质、地球化学及成因[J]. 岩石学报, 2018, 34(8):2341-2358. Gao Yongbao, Teng Jiaxin, Li Wenyuan,et al. Geology, Geochemistry and Ore Genesis of the Aoertuokanashi Manganese Deposit, West Kunlun, Xinjiang, Northwest China[J]. Acta Petrologica Sinica, 2018, 34(8):2341-2358.
[5] 张帮禄, 张连昌, 冯京, 等. 西昆仑玛尔坎苏地区奥尔托喀讷什大型碳酸锰矿床地质特征及成因探讨[J]. 地质论评, 2018, 64(2):361-377. Zhang Banglu, Zhang Lianchang, Feng Jing, et al. Genesis of the Large-Scale Ortokarnash Manganese Carbonate Deposit in the Malkansu District, Western Kunlun:Evidence from Geological Features[J]. Geological Review, 2018, 64(2):361-377.
[6] Zhang B L, Wang C L, Robbins L J, et al. Petrography and Geochemistry of the Carboniferous Ortokarnash Manganese Deposit in the Western Kunlun Mountains, Xinjiang, China:Implications for the Depositional Environment and the Origin of Mineralization[J]. Economic Geology, 2020. doi:10.5382/econgeo.4729.
[7] 查斌, 张连昌, 张帮禄, 等. 新疆阿克陶玛尔坎苏锰成矿带地质特征及成矿条件分析[J]. 新疆地质, 2019, 37(1):75-84. Zha Bin, Zhang Lianchang, Zhang Banglu, et al. Geology Characteristic and Metallogenic Conditions of the Manganese Ore Belt in Malkansu, Aketao, Xinjiang[J]. Xinjiang Geology, 2019, 37(1):75-84.
[8] Johnson J E, Webb S M, Ma C, et al. Manganese Mineralogy and Diagenesis in the Sedimentary Rock Record[J]. Geochimica et Cosmochimica Acta, 2016, 173:210-231.
[9] Hem J D. Chemical Factors that Influence the Availability of Iron and Manganese in Aqueous Systems[J]. Geological Society of America Bulletin, 1972, 83(2):443-450.
[10] Krauskopf K B. Separation of Manganese from Iron in Sedimentary Processes[J]. Geochimica et Cosmochimica Acta, 1957, 12(1):61-84.
[11] Herndon E M, Havig J R, Singer D M, et al. Manganese and Iron Geochemistry in Sediments Underlying the Redox-Stratified Fayetteville Green Lake[J]. Geochimica et Cosmochimica Acta, 2018, 231:50-63.
[12] Franklin M L, Morse J W. The Interaction of Manganese(II) with the Surface of Calcite in Dilute Solutions and Seawater[J]. Marine Chemistry, 1983, 12(4):241-254.
[13] Glasby G P, Schulz H D. Eh-pH Diagrams for Mn, Fe, Co, Ni, Cu and As Under Seawater Conditions:Application of Two New Types of Eh-pH Diagrams to the Study of Specific Problems in Marine Geochemistry[J]. Aquatic Geochemistry, 1999, 5(3):227-248.
[14] Mucci A. The Behavior of Mixed Ca-Mn Carbonates in Water and Seawater:Controls of Manganese Concentrations in Marine Porewaters[J]. Aquatic Geochemistry, 2004, 10(2):139-169.
[15] Dellwig O, Schnetger B, Meyer D, et al. Impact of the Major Baltic Inflow in 2014 on Manganese Cycling in the Gotland Deep (Baltic Sea)[J]. Frontiers in Marine Science, 2018, 5:1-20.
[16] Calvert S E, Price N B. Composition of Manganese Nodules and Manganese Carbonates from Loch Fyne, Scotland[J]. Contributions to Mineralogy and Petrology, 1970, 29(3):215-233.
[17] Pedersen T F, Price N B. The Geochemistry of Manganese Carbonate in Panama Basin Sediments[J]. Geochimica et Cosmochimica Acta, 1982, 46(1):59-68.
[18] Maynard J B. The Chemistry of Manganese Ores Through Time:A Signal of Increasing Diversity of Earth-Surface Environments[J]. Economic Geology, 2010, 105(3):535-552.
[19] Okita P M, Maynard J B, Spiker E C, et al. Isotopic Evidence for Organic Matter Oxidation by Manganese Reduction in the Formation of Stratiform Manganese Carbonate Ore[J]. Geochimica et Cosmochimica Acta, 1988, 52(11):2679-2685.
[20] Beukes N J, Swindell E P W, Wabo H. Manganese Deposits of Africa[J]. Episodes, 2016, 39(2):285-317.
[21] Roy S. Genetic Diversity of Manganese Deposition in the Terrestrial Geological Record[J]. Geological Society London Special Publications, 1997, 119(1):5-27.
[22] Okita P M, Shanks W C. Origin of Stratiform Sediment-Hosted Manganese Carbonate Ore Deposits:Examples from Molango, Mexico, and Taojiang, China[J]. Chemical Geology, 1992, 99(1):139-163.
[23] Bond D P G, Wignall P B. Pyrite Framboid Study of Marine Permian-Triassic Boundary Sections:A Complex Anoxic Event and Its Relationship to Contemporaneous Mass Extinction[J]. Geological Society of America Bulletin, 2010, 122(8):1265-1279.
[24] McLennan S M. Rare-Earth Elements in Sedimentary-Rocks:Influence of Provenance and Sedimentary Processes[J]. Reviews in Mineralogy, 1989, 21:169-200.
[25] Bau M, Schmidt K, Koschinsky A, et al. Discriminating Between Different Genetic Types of Marine Ferro-Manganese Crusts and Nodules Based on Rare Earth Elements and Yttrium[J]. Chemical Geology, 2014, 381:1-9.
[26] 陈登辉, 隋清霖, 赵晓健, 等. 西昆仑穆呼锰矿晚石炭世含锰碳酸盐岩地质地球化学特征及其沉积环境[J]. 沉积学报, 2019, 37(3):477-490. Chen Denghui, Sui Qinglin, Zhao Xiaojian, et al. Geology, Geochemical Characteristics, and Sedimentary Environment of Mn-Bearing Carbonate from the Late Carboniferous Muhu Manganese Deposit in West Kunlun[J]. Acta Sedimentologica Sinica, 2019, 37(3):477-490.
[27] Chisonga B C, Gutzmer J, Beukes N J, et al. Nature and Origin of the Protolith Succession to the Paleoproterozoic Serra Do Navio Manganese Deposit, Amapa Province, Brazil[J]. Ore Geology Reviews, 2012, 47(3):59-76.
[28] Maghfouri S, Rastad E, Movahednia M, et al. Metallogeny and Temporal-Spatial Distribution of Manganese Mineralizations in Iran:Implications for Future Exploration[J]. Ore Geology Reviews, 2019, 115:1-42.
[29] Polgári M, Hein J R, Bíró L, et al. Mineral and Chemostratigraphy of a Toarcian Black Shale Hosting Mn-Carbonate Microbialites (Úrkút, Hungary)[J]. Palaeogeography, Palaeoclimatology, Palaeoecology, 2016, 459:99-120.
[30] 贠杰, 高晓峰, 校培喜, 等. 西昆仑下石炭统乌鲁阿特组火山岩地球化学特征及地质意义[J]. 中国地质, 2015, 42(3):587-600. Yun Jie, Gao Xiaofeng, Xiao Peixi, et al. Geochemical Characteristics of the Lower Carboniferous Volcanic Rocks of the Wuluate Formation in the Western Kunlun Mountains and Their Geological Significance[J]. Geology in China, 42(3):587-600.
[31] 童金南, 殷鸿福. 古生物学[M]. 北京:高等教育出版社, 2007. Tong Jinnan, Yin Hongfu. Palaeontology[M]. Beijing:Higher Education Press, 2007.
[32] Nicholson K. Genetic Types of Mangane Oxide Deposits in Scotland:Indicators of Paleo-Ocean Spreading Rate and a Devonian Geochemical Mobility Boundary[J]. Economic Geology, 1992, 87:1301-1309.
[33] Frakes L A, Bolton B R. Origin of Manganese Giants:Sea-Level Change and Anoxic-Oxic History[J]. Geology, 1984, 12(2):83-86.
[34] Force E R, Maynard J B. Manganese:Syngenetic Deposits on the Margins of Anoxic Basins[C]//Force E R, Eidel J J, Maynard J B. Sedimentary and Diagenetic Mineral Deposits:A Basin Analysis Approach to Exploration. Littleton:Society of Economic Geologists, 1991:147-159.
[35] Qie W K, Algeo T J, Luo G M, et al. Global Events of the Late Paleozoic (Early Devonian to Middle Permian):A Review[J]. Palaeogeography Palaeoclimatology Palaeoecology, 2019, 531:15.
[36] Lu Y B, Jiang S, Lu Y C, et al. Productivity or Preservation? The Factors Controlling the Organic Matter Accumulation in the Late Katian Through Hirnantian Wufeng Organic-Rich Shale, South China[J]. Marine and Petroleum Geology, 2019, 109:22-35.
[37] Tian X X, Chen J T, Yao L, et al. Glacio-Eustasy and δ13C Across the Mississippian-Pennsylvanian Boundary in the Eastern Paleo-Tethys Ocean (South China):Implications for Mid-Carboniferous Major Glaciation[J]. Geological Journal, 2020,55(4):2704-2716.
[1] 刘忠, 陈海锋, 张怀东, 王波华. 安徽金寨沙坪沟整装勘查区铅锌矿“三位一体”成矿特征及找矿预测[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1539-1551.
[2] 张连昌, 张帮禄, 董志国, 谢月桥, 李文君, 彭自栋, 朱明田, 王长乐. 西昆仑玛尔坎苏石炭纪大型锰矿带构造背景与成矿条件[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1340-1357.
[3] 李堃, 刘飞, 刘凯, 赵少瑞, 汤朝阳, 段其发. 湘西-黔东地区铅锌矿床找矿模型与定量预测[J]. 吉林大学学报(地球科学版), 2020, 50(3): 825-841.
[4] 贺晓龙, 张达, 陈国华, 狄永军, 霍海龙, 李宁, 张志辉, 饶建锋, 魏锦, 欧阳永棚. 江西朱溪铜钨矿床成因:来自矿物学和年代学的启示[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1050-1070.
[5] 吴迪, 庄廷新, 田立, 刘晓东, 李伟民. 辽东铀成矿带黄沟铀矿床地质特征及成因探讨[J]. 吉林大学学报(地球科学版), 2017, 47(2): 452-463.
[6] 石学法, 李兵, 鄢全树, 叶俊. 西太平洋岛弧-弧后盆地热液活动及成矿作用[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1124-1138.
[7] 刘招君, 孙平昌, 柳蓉, 孟庆涛, 胡菲. 敦密断裂带盆地群油页岩特征及成矿差异分析[J]. 吉林大学学报(地球科学版), 2016, 46(4): 1090-1099.
[8] 冯志强,林丽,刘永江,付修根,庞艳春,王新利. 西秦岭造山带东段喷流沉积型铅锌矿床特征及其成矿模式--以徽县洛坝矿床为例[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1799-1811.
[9] 彭翼,何玉良,曾涛,钟江文,许国丽,苏小岩,谌军,彭松民,李震. 河南省Mo矿区域成矿模式与综合信息预测模型[J]. 吉林大学学报(地球科学版), 2013, 43(4): 1262-1275.
[10] 张勇, 孙景贵, 陈冬, 邢树文, 松权衡, 赵志, 赵克强, 白令安, 韩世炯. 延边地区天宝山多金属矿田的流体特征与成矿模式[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1665-1675.
[11] 李绪俊, 范文亮, 汪建宇, 范文嵩, 梁本胜, 范振华, 杨晓明, 任德奎. 吉林省海沟金矿脉岩锆石U-Pb年龄及其成矿意义[J]. J4, 2012, 42(5): 1366-1377.
[12] 刘招君, 孟庆涛, 贾建亮, 孙平昌, 柳蓉, 胡晓峰. 陆相盆地油页岩成矿规律:以东北地区中、新生代典型盆地为例[J]. J4, 2012, 42(5): 1286-1297.
[13] 孙爱群, 牛树银, 马宝军, 聂凤军, 江思宏, 张建珍, 王宝德, 陈超. 内蒙古拜仁达坝与维拉斯托银多金属矿床成矿构造对比[J]. J4, 2011, 41(6): 1784-1793.
[14] 李绪俊,郗爱华,陈 静. 脉状金矿定位预测的关键--主控矿因素分析[J]. J4, 2008, 38(5): 731-0737.
[15] 王建新,陈雪,赵利刚,臧兴运,谢海东,刘强. 吉林二密复式火山机构及成矿控制作用[J]. J4, 2008, 38(4): 576-0580.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 鲍庆中,张长捷,吴之理,王宏,李伟,桑家和,刘永生. 内蒙古白音高勒地区石炭纪石英闪长岩SHRIMP锆石U-Pb年代学及其意义[J]. J4, 2007, 37(1): 15 -0023 .
[2] 崔建军, 刘晓春, 胡娟, 曲玮. 桐柏杂岩中印支期变质岩包体的变质作用[J]. J4, 2009, 39(4): 618 -629 .
[3] 张晓飞, 李智明, 贾群子, 宋忠宝, 陈向阳, 张雨莲, 李东生, 舒晓峰. 青海祁漫塔格虎头崖多金属矿区花岗斑岩地球化学、年代学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2016, 46(3): 749 -765 .
[4] 程先钰, 李以科, 董满华, 曹侃. 阿拉善右旗特拜金矿赋矿地层时代厘定及其地质意义[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1565 -1577 .
[5] 王德海, 孟祥化, 郭峰, 任国选, 葛铭. 天津蓟县高于庄组微亮晶(MT)碳酸盐岩的沉积环境及成因探讨[J]. J4, 2009, 39(6): 1023 -1030 .
[6] 张允平. 东北亚地区晚侏罗-白垩纪构造格架主体特点[J]. J4, 2011, 41(5): 1267 -1284 .
[7] 李三忠, 杨朝, 赵淑娟, 李玺瑶, 索艳慧, 郭玲莉, 余珊, 戴黎明, 李少俊, 牟墩玲. 全球早古生代造山带(Ⅱ):俯冲-增生型造山[J]. 吉林大学学报(地球科学版), 2016, 46(4): 968 -1004 .
[8] 唐文龙,杨言辰,李骞,毛向军. 伊春前进地区岩浆岩的地球化学特征及其对成矿的制约[J]. J4, 2007, 37(1): 41 -0047 .
[9] 司秋亮, 崔天日, 唐振, 李伟, 吴新伟, 江斌, 李林川. 大兴安岭中段柴河地区玛尼吐组火山岩年代学、地球化学及岩石成因[J]. 吉林大学学报(地球科学版), 2015, 45(2): 389 -403 .
[10] 杨启军, 秦亚, 王泰山, 张青伟. 广西佛子冲矿田二长花岗斑岩的年代学、地球化学特征及其意义[J]. 吉林大学学报(地球科学版), 2017, 47(3): 760 -774 .