吉林大学学报(地球科学版) ›› 2020, Vol. 50 ›› Issue (5): 1323-1339.doi: 10.13278/j.cnki.jjuese.20190280

• 整装勘查区矿床成因与成矿作用研究专辑 • 上一篇    下一篇

西藏昂仁县多仁则—桑阿卡地区铜多金属矿点含矿岩体成因及成矿意义

赵亚云1, 刘晓峰1, 刘远超1, 次琼1, 郑常云1, 杨春四2, 李莉3, 付海龙1   

  1. 1. 西藏自治区地质矿产勘查开发局第二地质大队, 拉萨 850003;
    2. 中国科学院矿物学与成矿学重点实验室, 广州 510640;
    3. 西藏自治区地质矿产勘查开发局, 拉萨 850000
  • 收稿日期:2019-12-18 出版日期:2020-09-26 发布日期:2020-09-29
  • 作者简介:赵亚云(1988-),男,工程师,硕士,主要从事青藏高原矿产勘查、岩浆作用与成矿方面的研究,E-mail:1019517293@qq.com
  • 基金资助:
    中国地质调查局项目(121201004000160901-47,DD20190159-1,DD20190159-2020-13);西藏自治区专项基金项目(201904,202002)

Petrogenesis and Metallogenic Implication of Ore-Bearing Rock Mass of Copper Polymetallic Ore Occurrence in Duorenze-Sangaka Area, Angren County, Tibet

Zhao Yayun1, Liu Xiaofeng1, Liu Yuanchao1, Ci Qiong1, Zheng Changyun1, Yang Chunsi2, Li Li3, Fu Hailong1   

  1. 1. NO.2 Geological Team, Tibet Autonomous Region Geological Mining Exploration and Development Bureau, Lhasa 850003, China;
    2. Key Laboratory of Mineralogy and Metallogeny, Chinese Academy of Sciences, Guangzhou 510640, China;
    3. Geological Mining Exploration and Development Bureau, Tibet Autonomous Region, Lhasa 850000, China
  • Received:2019-12-18 Online:2020-09-26 Published:2020-09-29
  • Supported by:
    Supported by Project of China Geological Survey (121201004000160901-47, DD20190159-1, DD20190159-2020-13) and Geological Prospecting Fund of Tibet Autonomous Region(201904, 202002)

摘要: 冈底斯成矿带内的岩浆岩是印度板块与欧亚板块碰撞造山的产物,更是研究碰撞造山与成矿作用的理想对象。多仁则—桑阿卡地区位于冈底斯火山-岩浆弧中段中南部,区内含矿岩体为灰白色中细粒黑云母花岗闪长岩。LA-ICP-MS锆石U-Pb测年、岩石地球化学和Sr-Nd同位素研究表明:岩体就位年龄为(49.0±0.7)Ma,其形成时代为始新世;岩石具有高硅(w(SiO2)为67.13%)、高钾(w(K2O)为3.72%)、富碱(w(K2O+Na2O)为7.48%)、贫MgO(w(MgO)为1.34%,小于3%)的特征,为高钾钙碱性系列的高分异I型花岗岩;Eu负异常(δEu为0.70)和Sr的亏损暗示岩浆发生斜长石的分离结晶作用;岩石的微量元素表现出Th、U、K、Nd、Zr、Hf富集和Nb、Ta、Sr、Ti、P亏损的特征;全岩Sr-Nd同位素((87Sr/86Sr)i为0.705 280~0.705 530、εNdt)为-2.2~-1.6)、微量元素及元素比值揭示岩浆源区是壳幔混源,是在印度板块与欧亚板块俯冲-碰撞后板片断离构造背景下,热的软流圈地幔物质通过板片断离窗上涌,并诱发下地壳部分熔融,形成该地区壳幔混源岩浆-热液成矿作用。综合研究认为,多仁则—桑阿卡地区斑岩型-热液型铜多金属成矿作用是早始新世岩浆活动大爆发滞后的成矿响应,是与冈底斯成矿带内的壳幔花岗岩有关的Cu-Au-Mo-Fe-Pb-Zn成矿系统(52~47 Ma)的重要组成部分。

关键词: 多仁则—桑阿卡地区, 锆石U-Pb年龄, 地球化学, I型花岗岩, Sr-Nd同位素, 板片断离, 冈底斯成矿带

Abstract: The magmatic rocks in Gangdise metallogenic belt are the products of collision orogeny between Indian and Eurasian plates, and are of great significance to the study of collision orogeny and mineralization. Duorenze-Sangaka area is located in the south-central part of Gangdise volcano-magmatic arc, where ore-bearing gray white medium- to fine-grained biotite granodiorite is developed. The study of petro-geochemistry, Sr-Nd isotope, and LA-ICP-MS zircon U-Pb dating of the biotite granodiorite show that its emplacement age is (49.0±0.7) Ma, in Eocene period. The biotite granodiorites are featured by high silicon (w(SiO2)=67.13%), potassium (w(K2O)=3.72%), alkali-rich (w(K2O+Na2O) =7.48%), and low MgO (1.34%, less than 3%), which belong to high potassium calc-alkaline and highly differentiated I-type granite. The Eu negative anomaly (δEu=0.70) and Sr depletion suggest plagioclase crystallization during magmatic evolution. These samples are rich in Th, U, K, Nd, Zr, Hf, and poor in Nb, Ta, Sr, Ti, P. Their whole-rock Sr-Nd isotopes ((87Sr/86Sr)i=0.705 280-0.705 530, εNd(t)=-2.2-1.6), trace elements, and element ratios reveal that they were derived from mixed crust-mantle sources. The magmatic-hydrothermal mineralization was likely caused by partial melting of lower crust, which was triggered by asthenospheric mantle upwelling through the plate break-out window during the plate fragmental subduction-post-collision of Indian and Eurasian plates. The comprehensive study shows that the porphyry-hydrothermal vein-type copper polymetallic mineralization in Duorenze-Sangaka area was resulted from the eruption of Early Eocene magmatism, which is an important part of the Cu-Au-Mo-Fe-Pb-Zn metallogenic system (52-47 Ma) related to crust-mantle granitic magmatism in Gangdise metallogenic belt.

Key words: Duorenze-Sangaka area, zircon U-Pb age, geochemistry, I-type granite, Sr-Nd isotope, slab breakoff, Gangdise metallogenic belt

中图分类号: 

  • P588.12
[1] 莫宣学,董国臣,赵志丹,等.西藏冈底斯带花岗岩的时空分布特征及地壳生长演化[J]. 高校地质学报,2005,11(3):281-290. Mo Xuanxue, Dong Guochen, Zhao Zhidan, et al. Spatial and Temporal Distribution and Characteristics of Granitoids in the Gangdese, Tibet and Implication for Crustal Growth and Evolution[J]. Geological Journal of China Universities, 2005, 11(3):281-290.
[2] 潘桂堂,莫宣学,侯增谦,等.冈底斯造山带的时空结构及演化[J]. 岩石学报,2006,22(3):521-533. Pan Guitang, Mo Xuanxue, Hou Zengqian, et al. Spatial-Temporal Framework of the Gangdese Orogenic Belt and Its Evolution[J]. Acta Petrologica Sinica, 2006,22(3):521-533.
[3] 侯增谦,王二七,莫宣学,等. 青藏高原碰撞造山与成矿作用[M]. 北京:地质出版社,2008:1-980. Hou Zengqian, Wang Erqi, Mo Xuanxue, et al. Collisional Orogeny and Metallogenesis of the Tibetan Plateau[M]. Beijing:Geological Publishing House,2008:1-980.
[4] 纪伟强,吴福元,钟孙霖,等. 西藏南部冈底斯岩基花岗岩时代与岩石成因[J]. 中国科学:D辑:地球科学,2009,39(7):849-871. Ji Weiqiang, Wu Fuyuan, Zhong Sunlin, et al. Geochronology and Petrogenesis of Granitic Rocks in Gangdese Batholith, Southern Tibet[J]. Science China:Series D:Earth Science, 2009,39(7):849-871.
[5] 孟元库,许志琴,高存山,等. 藏南冈底斯带中段始新世岩浆作用的厘定及其大地构造意义[J]. 岩石学报,2018,34(3):513-546. Meng Yuanku, Xu Zhiqin, Gao Cunshan, et al. The Identification of the Eocene Magmatism and Tectonic Significance in the Middle Gangdese Magmatic Belt, Southern Tibet[J]. Acta Petrologica Sinica,2018,34(3):513-546.
[6] Mo X X, Dong G C, Zhao Z D, et al. Timing of Magma Mixing in the Gangdese Magmatic Belt During the India-Asian Collision:Zircon SHRIMP U-Pb Dating[J]. Acta Geologica Sinica, 2005,79:66-76.
[7] Hou Z Q, Cook N J. Metallogenesis of the Tibetan Collisional Orogen:A Review and Introduction to the Special Issue[J]. Ore Geology Reviews, 2009,36(1/2/3):2-24.
[8] Wang R, Richards J P, Hou Z Q, et al. Extent of Underthrusting of the Indian Plate Beneath Tibet Controlled of Miocene Porphyry Cu-Mo±Au Deposits[J]. Mineralium Deposita, 2014,49:165-173.
[9] 郑有业,多吉,张刚阳,等. 西藏吉如斑岩铜矿床的发现过程及意义[J]. 矿床地质,2007,26(3):317-321. Zheng Youye, Duo Ji,Zhang Gangyang, et al. Discovery of Jiru Porphyry Copper Deposit in Tibet and Its Significance[J]. Mineral Deposits, 2007,26(3):317-321.
[10] 西藏自治区地质矿产勘查开发局区域地质调查大队. 西藏亚模地区1:50000区域地质调查报告[R]. 北京:中国地质调查局,2013:1-299. Regional Geological Survey Team, Tibet Autonomous Region Geological Mining Exploration and Development Bureau.1:50000 Regional Geological Survey Report of the Yamo Area,Tibet[R]. Beijing:China Geological Survey,2013:1-299.
[11] 赵亚云,刘晓峰,刘远超,等. 西藏朱诺矿区外围次玛班硕地区铜成矿有利条件分析[J]. 甘肃地质,2017,26(4):28-36. ZhaoYayun, Liu Xiaofeng, Liu Yuanchao, et al. Copper Metallogenic Condition of Cimabanshuo Area Around Zhunuo Copper Mine in Tibet[J]. Gansu Geology, 2017,26(4):28-36.
[12] 赵亚云,刘晓峰,刘波,等. 西藏罗布真矿区花岗闪长斑岩锆石U-Pb年龄、地球化学特征[J]. 西藏地质,2018,45(2):15-25. Zhao Yayun, Liu Xiaofeng, Liu Bo, et al.Geochemical Characteristics,Zircon U-Pb Age of the Granodiorite Porphyry in Luobuzhen Orefield, Tibet[J]. Tibet Geology,2018,45(2):15-25.
[13] 赵亚云,杨春四,吕金梁,等. 西藏罗布真矿区林子宗群火山岩锆石U-Pb年龄、地球化学特征及意义[J]. 现代地质,2019,33(1):73-85. Zhao Yayun, Yang Chunsi, Lü Jinliang, et al. Its Significance and Geochemical Characteristics,Zircon U-Pb Age of the Linzizong Group Volcanic Rocks in Luobuzhen Orefield, Tibet[J]. Geoscience,2019,33(1):73-85.
[14] 赵亚云,张树明,汤琳,等. 龙首山中段芨岭花岗岩体Sr-Nd-Pb同位素特征及意义[J]. 地球科学,2016,41(6):1016-1031. Zhao Yayun, Zhang Shuming, Tang Lin,et al. Sr-Nd-Pb Isotopic Characteristics and Its Geological Significance of the Jiling Grantic Pluton in the Middle Longshou Mountains Areas[J]. Earth Science,2016,41(6):1016-1031.
[15] Liu Y S, Hu Z C, Gao S,et al. In Situ Analysis of Major and Trace Elements of Anhydrous Minerals by LA-ICP-MS Without Applying an Internal Standard[J]. Chemical Geology, 2008,257:34-43.
[16] Ludwig K R. User's Manual for Isoplot 3.0:A Geochronological Toolkit for Microsoft Excel[J]. Berkeley Geochronology Center, Special Publication,2003,4:1-71.
[17] 姚晓峰,唐菊兴,李志军,等. 班怒带西段尕尔穷铜金矿两套侵入岩源区及其地质意义:来自Hf同位素特征的指示[J]. 吉林大学学报(地球科学版),2012,42(增刊2):188-198. Yao Xiaofeng, Tang Juxing, Li Zhijun, et al. Magma Origin of Two Plutons from Gaerqiong Copper-Gold Deposit and It's Geological Significance, Western Bangonghu-Nujiang Metallogenic Belt, Tibet:Implication from Hf Isotope Characteristics[J]. Journal of Jilin University(Earth Science Edition),2012,42(Sup.2):188-198.
[18] 史长义,鄢明才,迟清华,等. 中国花岗岩类化学元素丰度[M]. 北京:地质出版社,2008:1-124. Shi Changyi, Yan Mingcai, Chi Qinghua, et al. China Granite Chemical Element Abundance[M]. Beijing:Geological Publishing House,2008:1-124.
[19] Le Maitre R W. Igneous Rocks:A Classification and Glossary of Terms:Recommendations of the International Union of Geological Sciences,Sub-Commission on the Systematics of Igneous Rocks[M]. Cambridge:Cambridge University Press,2002.
[20] Peccerillo A,Taylor S R. Geochemistry of Eocene Calc-Alkaline Volcanic Rocks from the Kastamonu Area,Northern Turkey[J]. Contributions to Mineralogy and Petrology,1976,58(1):63-81.
[21] Maniar P D,Piccoli P M. Tectonic Discrimination of Granitoids[J]. Geological Society of America Bulletin,1989,101(5):635-643.
[22] Sun S S, McDonough W F. Chemical and Isotopic Systematics of Oceanic Basalts:Implications for Mantle Composition and Processes[C]//Saunders A D, Norry M J. Magmatism in the Ocean Basins.London:Geological Society Special Publication,1989:313-345.
[23] 赵亚云,刘晓峰,刘远超,等. 西藏次玛班硕地区由秋米斑岩体锆石U-Pb年龄、地球化学特征[J]. 地球科学,2018,43(12):4551-4565. Zhao Yayun, Liu Xiaofeng, Liu Yuanchao,et al. Zircon U-Pb Ages and Geochemical Characteristics of Youqiumi Porphyry Pluton in Cimabanshuo Area,in Tibet[J]. Earth Science,2018,43(12):4551-4565.
[24] Miller R G,O'Nions R K. Source of Precambrian Chemical and Clastic Sediments[J]. Nature,1985,314:325-330.
[25] Bouvier A, Vervoort J D, Patchett P J. Lu-Hf and Sm-Nd Istope Composition of CHUR:Constraints from Unequilibrated Chlndrites and Implications for the Bulk Composition of Terrestrial Planets[J]. Earth and Plannetary Science Letters,2008,273(1/2):48-57.
[26] Jahn B M,Condie K C. Volution of the Kaapvaal Craton as Viewed from Geochemical and Sm-Nd Isotopic Analyses of Intracratonic Pelites[J]. Geochimica et Cosmochimica Acta,1995,59(11):2239-2258.
[27] 邢凤鸣. 锶同位素初始比值在划分花岗岩成因类型上的应用探讨[J]. 岩石学报,1987,2(5):75-80. Xing Fengming.On the Application of Initial Strontium Isotope Rations in Division of Granitic Types[J]. Acta Petrologica Sinica,1987,2(5):75-80.
[28] Depaolo D J. Isotope Studies of Processes in Mafic Magma Chambers:I:Kiglapait Intrusion, Labrador[J]. Journal of Petrology,1985,26:925-951.
[29] Depaolo D J, Perry F V, Baldridge W S. Crustal Versus Mantle Sources of Granitic Magmas:A Two-Parameter Model Based on Nd Isotopic Studies[J]. Royal Society of Edinburgh Transactions:Earth Sciences,1992,83:439-446.
[30] Mo X X, Hou Z Q, Niu Y L, et al. Mantle Contributions to Crustal Thickening During Continental Collision Evidence from Cenozoic Igneous Rocks in Southern Tibet[J]. Lithos,2007,96(1/2):225-242.
[31] 吴福元,林强,江博明. 造山带造山后花岗岩的同位素特点与地壳生长意义[J]. 科学通报,1997,42(20):2188-2192. Wu Fuyuan, Lin Qiang, Jahn Boming.Northern China Orogenic Belt Post-Tectonic of Granitic Isotope Characteristics and Crustal Growth's Significance[J]. Chinese Science Bulletin,1997,42(20):2188-2192.
[32] Zhu D C, Wang Q, Cawood P A, et al.Raising the Gangdese Mountains in Southern Tibet[J]. Journal of Geoophysical Research (Solid Earth),2017,122(1):214-223.
[33] 张泽明,丁慧霞,董昕,等. 喜马拉雅造山带两种不同类型榴辉岩与印度大陆差异性俯冲[J]. 地球科学,2019,44(5):1602-1620. Zhang Zeming, Ding Huixia, Dong Xin, et al. Two Contrasting Eclogite Types in the Himalayan Orogen and Differential Subduction of Indian Continent[J]. Earth Science, 2019,44(5):1602-1620.
[34] 秦克章,李光明,赵俊兴,等. 西藏首例独立钼矿:冈底斯沙让大型斑岩钼矿的发现及其意义[J]. 中国地质,2008,35(6):1101-1112. Qin Kezhang, Li Guangming, Zhao Junxing, et al. Discovery of Sharang Large-Scale Porphyry Molybdenum Deposit, the First Single Mo deposit in Tibet and Its Significance[J]. Geology in China,2008,35(6):1101-1112.
[35] 唐菊兴,陈毓川,王登红,等. 西藏工布江达县沙让斑岩钼矿床辉钼矿铼-锇同位素年龄及其地质意义[J].地质学报,2009,83(5):698-704. Tang Juxing, Chen Yuchuan, Wang Denghong, et al. Re-Os Dating of Molybdenite from the Sharang Porphyry Molybdenum Deposit in Gongbo'gyamda County, Tibet and Its Geological Significance[J]. Acta Geologica Sinica, 2009,83(5):698-704.
[36] Zheng Y C, Fu Q, Hou Z Q, et al. Metallogeny of the Northeastern Gangdese Pb-Zn-Ag-Fe-Mo-W Polymetallic Belt in the Lhasa Terrane, Southern Tibet[J]. Ore Geology Reviews,2015,70:510-532.
[37] 张刚阳,郑有业,龚福志,等. 西藏吉如斑岩铜矿:与陆陆碰撞过程相关的斑岩成岩成矿时代约束[J]. 岩石学报,2008,24(3):473-479. Zhang Gangyang, Zheng Youye, Gong Fuzhi, et al. Geochronologic Constraints on Magmatic Intrusions and Mineralization of the Jiru Porphyry Copper Deposit, Tibet, Associated with Continent-Continent Collisional Process[J]. Acta Petrologica Sinica, 2008,24(3):473-479.
[38] 于玉帅,杨竹森,多吉,等. 西藏加多捕勒铁铜矿成矿岩体时代与成因:锆石U-Pb年龄、Hf同位素与稀土元素证据[J]. 矿床地质,2011,30(3):420-435. Yu Yushuai, Yang Zhusen, Duo Ji, et al. Age and Petrogenesis of Magmatic Rocks from Jiaduobule Skarn Fe-Cu Deposit in Tibet:Evidence from Zircon SHRIMP U-Pb Dating, Hf Isotope and REE[J]. Mineral Deposits, 2011,30(3):420-435.
[39] Jiang Z Q, Wang Q, Derek A, et al. Zircon U-Pb Geochronology and Geochemistry of Late Cretaceous-Early Eocene Granodiorites in the Southern Gangdese Batholith of Tibet:Petrogenesis and Implications for Geodynamics and Cu±Au±Mo Mineralization[J]. International Geology Review,2015,57(3):373-392.
[40] Mo X X, Dong G C, Zhao Z D, et al. Mantle Input to the Crust in Southern Gangdese,Tibet,During the Cenozoic:Zircon Hf Isotopic Evidence[J]. Journal of Earth Science, 2009,20(2):241-249.
[41] Mo X X, Niu Y L, Dong G C, et al. Contribution of Syncollisional Felsic Magmatism to Continental Crust Growth:A Case Study of the Paleogene Linzizong Volcanic Succession in Southern Tibet[J]. Chemical Geology,2008,250(1/2/3/4):49-67.
[42] Lee H Y, Chung S L, Lo C H. Eocene Neotethyan Slab Break off in Southern Tibet Inferred from the Linzizong Volcanic Record[J]. Tectonophysics,2009:477:20-37.
[43] 赵亚云. 龙首山中段古生代花岗岩岩石学、地球化学特征及地质意义[D]. 南昌:东华理工大学,2016:1-79. Zhao Yayun. Petrology, Geochemistry Characteristics and Geological Significance of Paleozoic Granites in Middle Longshou Moutains,Gansu Province[D]. Nanchang:East China University of Technology,2016:1-79.
[44] 陈希节,许志琴,孟元库,等. 冈底斯带中段中新世埃达克质岩浆作用的年代学、地球化学及Sr-Nd-Hf同位素制约[J]. 岩石学报,2014,30(8):2253-2268. Chen Xijie, Xu Zhiqin, Meng Yuanku, et al. Petrogenesis of Miocene Adakitic Diorite-Porphyrite in Middle Gangdese Batholith, Southern Tibet:Constraints from Geochemistry, Geochronology and Sr-Nd-Hf Isotopes[J]. Acta Petrologica Sinica,2014,30(8):2253-2268.
[45] Alther R, Holl A, Hegner E. High-Potassium, Calc-Alkaline I-Type Plutonism in the European Variscides:Northern Vosges(France) and Northern Schwarzwald(Germany)[J]. Lithos,2000,50:51-73.
[46] 郭春丽,曾令森,高利娥,等. 福建河田高分异花岗岩的矿物和全岩地球化学找矿标志研究[J]. 地质学报,2017,91(8):1796-1817. Guo Chunli, Zeng Lingsen, Gao Li'e,et al. Highly Fractionated Grantitic Minerals and Whole-Rock Geochemistry Prospecting Markers in Hetian, Fujian Province[J]. Acta Geologica Sinica,2017, 91(8):1796-1817.
[47] 李奋其,李益多,张士贞, 等. 西藏朗县地区增生楔杂岩带90 Ma岛弧型深成岩浆活动和意义[J]. 中国地质,2016, 43(1):142-152. Li Fenqi, Li Yiduo, Zhang Shizhen, et al. The 90 Ma Island-Arc Type Plutonism in the Subduction-Accretionary Complex in Langxian County Area,Tibet[J]. Geology in China,2016,43(1):142-152.
[48] Hou Z Q, Yang Z M, Lu Y J, et al. A Genetic Linkage Between Subduction and Collision-Related Porphyry Cu Deposits in Continental Collision Zones[J]. Geology, 2015,43(3):247-250.
[49] 凌洪飞,沈渭洲,孙涛,等. 广东省22个燕山期花岗岩的源区特征及成因:元素及Nd-Sr同位素研究[J]. 岩石学报,2006,22(12):2687-2703. Ling Hongfei, Shen Weizhou, Sun Tao, et al. Genesis and Source Characteristics of 22 Yanshanian Granites in Guangdong Province:Study of Element and Nd-Sr Isotopes[J]. Acta Petrologica Sinica,2006,22(12):2687-2703.
[50] Pearce J A, Harris N B W,Tindle A G. Trace Element Discrimination Diagram for the Tectonic Interpretation of Granitic Rocks[J]. Journal of Petrology,1984,25(4):956-983.
[51] Zhu D C, Wang Q, Zhao Z D. Magmatic Record of India-Asia Collision[R].Beijing:Scientific Reports, 2015:14289.
[52] Leech M L, Singh S, Jain A K, et al. The Onset of India-Asia Continental Collision:Early,Steep Subduction Required by the Timing of HUP Metamorphism in the Western Himalaya[J]. Earth and Planetary Science Letters,2005,234:83-97.
[1] 范媛媛, 刘云华, 于晓飞, 赵强, 李小严, 邓楠, 马塬皓. 甘肃武都金坑子金矿床地球化学特征及成因探讨[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1404-1417.
[2] 孙海瑞, 吕志成, 于晓飞, 李永胜, 杜泽忠, 吕鑫, 公凡影. 甘肃柳园地区早二叠世正长花岗斑岩脉锆石U-Pb年代学、岩石地球化学特征——对北山造山带晚古生代构造背景的指示[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1433-1449.
[3] 贺根文, 路思明, 彭琳琳, 于长琦, 李伟, 刘翠辉. 赣南狮吼山硫铁多金属矿区花岗岩地球化学、年代学特征及其成因[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1491-1504.
[4] 余振东, 项新葵, 谭荣, 孙德明, 张斯. 赣北大湖塘平苗矿段白云母花岗岩锆石U-Pb年代学、地球化学及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1505-1517.
[5] 熊光强, 刘敏, 张达, 王忠. 内蒙古西乌旗迪彦庙蛇绿岩带内辉长岩地球化学及年代学[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1599-1614.
[6] 余长胜, 杨言辰, 韩世炯, 杨昆林, 宋朝阳, 张易航, 王旺. 大兴安岭下嘎来奥伊铅锌矿床钾长花岗岩的岩石成因及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1042-1058.
[7] 任文恺, 王生云, 陈礼标, 吴少锋, 张海青. 青海同仁兰采地区花岗闪长岩LA-ICP-MS锆石U-Pb年代学、地球化学特征及其地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(4): 1059-1074.
[8] 王德远, 续海金, 王攀, 贾敏, 高占冬. 大陆造山带深熔垮塌的岩石学、地球化学证据:以北大别深熔混合岩为例[J]. 吉林大学学报(地球科学版), 2020, 50(3): 675-693.
[9] 任云生, 刘小禾, 商青青, 陈聪, 杨群, 郝宇杰, 孙振明. 吉林省和龙地区鸡南BIF型铁矿床含矿建造地球化学特征及形成时代[J]. 吉林大学学报(地球科学版), 2020, 50(3): 800-814.
[10] 张健, 张海华, 陈树旺, 郑月娟, 张德军, 苏飞, 黄欣. 松辽盆地北部上二叠统林西组地球化学特征及地质意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 518-530.
[11] 陈会军, 于宏斌, 马永非, 陈井胜, 钱程, 刘世伟, 崔天日, 钟辉. 吉东南地区五女峰岩体锆石U-Pb年代学、岩石地球化学特征及其构造意义[J]. 吉林大学学报(地球科学版), 2020, 50(2): 531-541.
[12] 孟庆涛, 李金国, 刘招君, 胡菲, 徐川. 茂名盆地羊角含矿区始新统油柑窝组油页岩有机地球化学特征及沉积环境[J]. 吉林大学学报(地球科学版), 2020, 50(2): 356-367.
[13] 宋宇, 刘招君, Achim Bechtel, 徐银波, 孟庆涛, 孙平昌, 朱凯. 老黑山盆地下白垩统穆棱组油页岩与煤含油率控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 378-391.
[14] 郑国栋, 孟庆涛, 刘招君. 松辽盆地北部青一段油页岩地球化学特征及其记录的古湖泊学信息[J]. 吉林大学学报(地球科学版), 2020, 50(2): 392-404.
[15] 和钟铧, 王启智, 王强. 大兴安岭索伦地区哲斯组碎屑岩地球化学特征和锆石U-Pb年龄对沉积物源属性约束[J]. 吉林大学学报(地球科学版), 2020, 50(2): 405-424.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 付建刚, 李光明, 王根厚, 张林奎, 梁维, 张小琼, 焦彦杰, 董随亮. 西藏错那洞穹窿同构造矽卡岩特征及相关铍钨锡稀有金属矿化的成矿时代[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1304 -1322 .
[2] 李洪梁, 李光明, 丁俊, 张志, 卿成实, 付建刚, 凌晨, 刘宇奇. 藏南扎西康铅锌多金属矿床成因——硫化物原位硫同位素证据[J]. 吉林大学学报(地球科学版), 2020, 50(5): 1289 -1303 .