吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1770-1782.doi: 10.13278/j.cnki.jjuese.20200028
黄达1,2,3, 马昊2, 石林4
Huang Da1,2,3, Ma Hao2, Shi Lin4
摘要: 为进一步研究层状反倾边坡的弯曲倾倒变形机制,以离心试验为原型,通过离散元数值模拟,研究了层状岩质反倾边坡的变形机理与影响因素。通过预置层内随机裂隙,实现了破裂面的形成和贯通。研究结果表明:模拟结果与试验吻合较好,边坡变形可分为起始蠕变、稳态变形和失稳破坏3个阶段;边坡破裂面在达到破坏荷载(Gf)后瞬间贯通,呈直线型,产状受岩层倾角控制,Gf值与坡角幂函数相关;反倾边坡的破坏需满足倾角和坡角启动条件,且变形破坏与岩层所受弯矩关系密切,当倾角为70°~80°、坡角大于60°时,最易破坏;典型破坏模式有倾倒-折断-块体式、倾倒-弯曲-折断式、倾倒-反折式3种,其受倾角、坡角组合控制;对材料参数的正交试验表明,各参数对Gf的敏感性从大到小依次为密度、层面内摩擦角、层厚、密度比、层面黏聚力,且Gf与层厚、层面内摩擦角及密度比具有良好的线性相关性;层面内摩擦角可影响破裂面产状,从而控制变形体规模,其他参数仅影响Gf的大小。
中图分类号:
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454. Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454. [2] Liu M, Liu F Z, Huang R Q, et al. Deep-Seated Large-Scale Toppling Failure in Metamorphic Rocks:A Case Study of the Erguxi Slope in Southwest China[J]. Journal of Mountain Science, 2016,13(12):2094-2110. [3] Lin P, Liu X L, Hu S Y, et al. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China[J]. Rock Mechanics and Rock Engineering, 2016, 49:2253-2276. [4] 黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J].工程地质学报, 2017, 25(5):1165-1181. Huang Runqiu, Li Yusheng, Yan Ming. The Implication and Evaluation of Toppling Failure in Engineering Geology Practice[J]. Journal of Engineering Geology, 2017, 25(5):1165-1181. [5] 包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院院报, 2013, 30(11):55-66,71. Bao Chenggang. Application and Development of Centrifugal Modeling Technology for Geotechnical Engineering in China[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(11):55-66,71. [6] Adhikary D P, Dyskin A V, Jewell R J, et al. A Study of the Mechanism of Flexural Toppling Failure of Rock Slopes[J]. Rock Mechanics and Rock Engineering, 1997, 30(2):75-93. [7] 汪小刚, 张建红, 赵毓芝, 等. 用离心模型研究岩石边坡的倾倒破坏[J]. 岩土工程学报,1996,18(5):14-21. Wang Xiaogang, Zhang Jianhong, Zhao Yuzhi, et al. Investigations on Mechanism of Slope Toppling Failure by Centrifuge Model Testing[J]. Chinese Journal of Geotechnical Engineering, 1996,18(5):14-21. [8] 吴昊, 赵维, 年廷凯, 等. 反倾层状岩质边坡倾倒破坏的离心模型试验研究[J]. 水利学报, 2018, 49(2):223-231. Wu Hao, Zhao Wei, Nian Tingkai, et al. Study on the Anti-Dip Layered Rock Slope Toppling Failure Based on Centrifuge Model Test[J]. Journal of Hydraulic Engineering, 2018, 49(2):223-231. [9] 黄达, 马昊, 孟秋杰, 等. 软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J]. 岩土工程学报, 2020, 42(7):1286-1295. Huang Da, Ma Hao, Meng Qiujie, et al. Centrifugal Model Test and Numerical Simulation for Anaclinal Rock Slopes with Soft-Hard Interbedded Structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7):1286-1295. [10] Leandro R A, Iván G, Roberto M. Analysisof a Complex Toppling-Circular Slope Failure[J]. Engineering Geology, 2010, 114(1):93-104. [11] 马昊,黄达,石林.基于断距-层厚特征统计的反倾边坡S型破坏演化数值模拟[J].工程地质学报, 2020, 28(6):1160-117. Ma Hao, Huang Da, Shi Lin. Numerical Simulationof S-Shaped Failure Evolution of Anti-Dip Slope Based on Statistics of Broken Length and Layer Thickness[J]. Journal of Engineering Geology, 2020, 28(6):1160-1171. [12] 孙东亚, 彭一江, 王兴珍. DDA数值方法在岩质边坡倾倒破坏分析中的应用[J]. 岩石力学与工程学报, 2002, 21(1):39-42. Sun Dongya, Peng Yijiang, Wang Xingzhen. Application of DDA Method in Stability Analysis of Topple Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1):39-42. [13] 程东幸, 刘大安, 丁恩保, 等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报, 2005, 27(11):1362-1366. Cheng Dongxing, Liu Daan, Ding Enbao, et al. Analysis on Influential Factors and Toppling Conditions of Toppling Rock Slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11):1362-1366. [14] 蔡跃, 三谷泰浩, 江琦哲郎. 反倾层状岩体边坡稳定性的数值分析[J]. 岩石力学与工程学报, 2008,27(12):2517-2522. Cai Yue, Mitani Yasuhiro, Esaki Tetsuro. Numerical Analysis of Stability for an Antidip Stratified Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(12):2517-2522. [15] 李明霞, 董联杰. 层状反倾边坡变形特征及影响因素分析[J]. 计算力学学报, 2015,32(6):831-837. Li Mingxia, Dong Lianjie. Analysis on Influential Factors and Deformation Characteristics of Toppling Slope[J]. Chinese Journal of Computational Mechanics, 2015,32(6):831-837. [16] Adhikary D P, Dyskin A V. Modelling of Progressive and Instantaneous Failures of Foliated Rock Slopes[J]. Rock Mechanics and Rock Engineering, 2007, 40(4):349-362. [17] Itasca Consulting Group Inc. UDEC (Universal Distinct Element Code), Version 6.0[Z]. Minneapolis:Itasca, 2014. [18] Diederichs M S, Kaiser P K. Stability of Large Excavation in Laminated Hard Rock Masses:The Voussoir Analogue Revisited[J]. International Journal of Rock Mechanics and Mining Sciences. 1999, 36(1):97-117. [19] Zheng Y, Chen C X, Liu T T, et al. Study on the Mechanisms of Flexural Toppling Failure in Anti-Inclined Rock Slopes Using Numerical and Limit Equilibrium Models[J]. Engineering Geology, 2018,237:116-128. [20] Cho N, Martin C D, Sego D C. A Clumped Particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7):997-1010. [21] 赵华, 李文龙, 卫俊杰, 等. 反倾边坡倾倒变形演化过程的模型试验研究[J]. 工程地质学报, 2018, 26(3):749-757. Zhao Hua, Li Wenlong, Wei Junjie, et al. Model Test Study on Toppling Deformation Evolution Process of Counter-Tilt Slope[J]. Journal of Engineering Geology, 2018, 26(3):749-757. [22] 刘毅, 赵斌滨, 殷坤龙,等.基于正交设计的麻柳林滑坡稳定性敏感分析[J]. 地球科学, 2019, 44(2):677-684. Liu Yi, Zhao Binbin, Yin Kunlong, et al. Sensitivity Analysis of Maliulin Landslide Stability Based on Orthogonal Design[J]. Earth Science,2019, 44(2):677-684. [23] 倪恒, 刘佑荣, 龙治国. 正交设计在滑坡敏感性分析中的应用[J]. 岩石力学与工程学报, 2002, 21(7):989-992. Ni Heng, Liu Yourong, Long Zhiguo. Applications of Orthogonal Design to Sensitivity Analysis of Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7):989-992. [24] 游昆骏. 澜沧江苗尾水电站右坝肩边坡倾倒岩体开挖变形晌应及稳定性研究[D]. 成都:成都理工大学, 2014. You Kunjun. Study on Deformation Response and Stability of Toppling Deformation Rock by Excavation at Right Bank Abutment of Miaowei Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2014. [25] 赵永辉. 澜沧江古水水电站争岗巨型滑坡形成机理及演化过程研究[D]. 成都:成都理工大学, 2016. Zhao Yonghui. Research on the Formation and Evolution Mechanism of Zhenggang Giant Landslide of Gushui Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2016. [26] 贺宇航. 澜沧江苗尾水电站坝肩倾倒岩体开挖变形响应研究[D].成都:成都理工大学, 2015. He Yuhang. Study on Deformation Response of Toppling Deformation Rock by Excavation at Miaowei Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2015. [27] 张御阳, 裴向军, 唐皓, 等. 反倾岩坡倾倒变形结构面影响效应研究[J]. 工程地质学报, 2018, 26(4):844-851. Zhang Yuyang, Pei Xiangjun, Tang Hao, et al. Experimental Tests for Impact of Structural Surfaces to Toppling Deformation in Anti-Dipped Rock Slopes[J]. Journal of Engineering Geology, 2018, 26(4):844-851. [28] 王梓龙,裴向军,张御阳,等. 松动岩体工程特性研究:以雅砻江楞古水电站松动岩体为例[J].吉林大学学报(地球科学版), 2019, 49(5):1376-1388. Wang Zilong, Pei Xiangjun, Zhang Yuyang, et al. Engineering Characteristics of Loose Rock Mass:Taking Loose Rock Mass of Lenggu Hydropower Station in Yalong River as an Example[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1376-1388. [29] 白永健,王运生,葛华,等. 金沙江深切河谷百胜滑坡演化过程及成因机制[J].吉林大学学报(地球科学版),2019,49(6):1680-1688. Bai Yongjian,Wang Yunsheng,Ge Hua,et al. Formation Evolution and Genetic Mechanism of Baisheng Landslide in the Deep-Incised Valley of Jinsha River[J]. Journal of Jilin University (Earth Science Edition),2019,49(6):1680-1688. [30] 欧小强,王奭,李永亮,等.拉林铁路板块缝合带隧道地应力分析[J].吉林大学学报(地球科学版), 2019, 49(6):1689-1697. Ou Xiaoqiang,Wang Shi,Li Yongliang,et al. In-Situ Stress Analysis of Tunnel in Plate Suture Zone of Lhasa-Nyingchi Railway[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1689-1697. |
[1] | 彭恺然, 刘红帅, 平新雨, 程旷. CFD-DEM耦合模拟中拖曳力模型精度[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1400-1407. |
[2] | 王婷, 兰景岩, 宋锡俊, 吴连斌, 蔡金豆, 史庆旗. 基于离心模型试验的海域软土场地设计反应谱特征分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1391-1399. |
[3] | 洪勇, 李子睿, 唐少帅, 王陆阳, 李亮. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1814-1822. |
[4] | 王吉亮,杨静,李会中,黄孝泉,刘冲平,白伟,郝文忠,朱永生. 乌东德水电站左岸拱肩槽边坡稳定性[J]. 吉林大学学报(地球科学版), 2013, 43(2): 528-536. |
[5] | 邓继新, 韩德华. 应力松弛作用对未固结砂岩等效弹性性质的影响[J]. J4, 2011, 41(1): 283-291. |
|