吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (6): 1770-1782.doi: 10.13278/j.cnki.jjuese.20200028

• 地质工程与环境工程 • 上一篇    下一篇

反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟

黄达1,2,3, 马昊2, 石林4   

  1. 1. 河北工业大学土木与交通学院, 天津 300401;
    2. 重庆大学土木工程学院, 重庆 400044;
    3. 长安大学地质工程与测绘学院, 西安 710054;
    4. 中铁第四勘察设计院集团有限公司, 武汉 430063
  • 收稿日期:2020-02-10 出版日期:2021-11-26 发布日期:2021-11-24
  • 通讯作者: 马昊(1993-),男,工程师,主要从事边坡工程与地质灾害方面的研究,E-mail:mahgeo@126.com E-mail:mahgeo@126.com
  • 作者简介:黄达(1976-),男,教授,博士生导师,主要从事岩石力学与地质灾害方面的研究,E-mail:hdcqy@126.com
  • 基金资助:
    国家自然科学基金项目(41672300,41972297)

Discrete Element Simulation of Toppling Mechanism and Influencing Factors of Anti-Dip Layered Rock Slope

Huang Da1,2,3, Ma Hao2, Shi Lin4   

  1. 1. School of Civil and Transportation, Hebei University of Technology, Tianjin 300401, China;
    2. School of Civil Engineering, Chongqing University, Chongqing 400044, China;
    3. College of Geological Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    4. China Railway Siyuan Survey and Design Group Co., Ltd., Wuhan 430063, China
  • Received:2020-02-10 Online:2021-11-26 Published:2021-11-24
  • Supported by:
    Supported by the National Natural Science Foundation of China (41672300,41972297)

摘要: 为进一步研究层状反倾边坡的弯曲倾倒变形机制,以离心试验为原型,通过离散元数值模拟,研究了层状岩质反倾边坡的变形机理与影响因素。通过预置层内随机裂隙,实现了破裂面的形成和贯通。研究结果表明:模拟结果与试验吻合较好,边坡变形可分为起始蠕变、稳态变形和失稳破坏3个阶段;边坡破裂面在达到破坏荷载(Gf)后瞬间贯通,呈直线型,产状受岩层倾角控制,Gf值与坡角幂函数相关;反倾边坡的破坏需满足倾角和坡角启动条件,且变形破坏与岩层所受弯矩关系密切,当倾角为70°~80°、坡角大于60°时,最易破坏;典型破坏模式有倾倒-折断-块体式、倾倒-弯曲-折断式、倾倒-反折式3种,其受倾角、坡角组合控制;对材料参数的正交试验表明,各参数对Gf的敏感性从大到小依次为密度、层面内摩擦角、层厚、密度比、层面黏聚力,且Gf与层厚、层面内摩擦角及密度比具有良好的线性相关性;层面内摩擦角可影响破裂面产状,从而控制变形体规模,其他参数仅影响Gf的大小。

关键词: 离心模型试验, 离散元, 反倾边坡, 倾倒变形

Abstract: In order to further study the mechanism and influcing factors of the toppling of layered anti-dip slopes, the discrete element simulation based on centrifugal model test was adopted. The formation of rupture surface was realized by presetting random cracks in the rock layers. The simulation results are in good agreement with the physical test. Slope deformation can be divided into three stages:Initial creep, steady-state deformation, and instability failure. The results show that:The rupture surface is straight-line after the failure load (Gf) is reached, and the occurrence is controlled by the dip angle of the rock layer; The Gf value is related to the power function of the slope angle; The failure of the anaclinal slope needs to satisfy the initial conditions, and the deformation is closely related to the bending moment of the rock layer, when the dip angle is 70°-80° and the slope angle is larger than 60°, it is the most vulnerable state. There are three typical failure modes:Toppling-rupture-block detachment type, toppling-bend-rupture type, and toppling-reversal type, which are controlled by the combination of dip and slope angle. The orthogonal simulations on material parameters show that the sensitivity of each parameter to Gf from large to small is density, friction angle of beddings, layer thickness, density ratio, and cohesion of beddings; The value of friction angle of beddings can affect the occurrence of the rupture surface, thus controlling the size of the deformation area, while other parameters only affect the value of Gf.

Key words: centrifugal model test, discrete element method, anaclinal slope, toppling deformation

中图分类号: 

  • P59
[1] 黄润秋. 20世纪以来中国的大型滑坡及其发生机制[J]. 岩石力学与工程学报, 2007, 26(3):433-454. Huang Runqiu. Large-Scale Landslides and Their Sliding Mechanisms in China Since the 20th Century[J]. Chinese Journal of Rock Mechanics and Engineering, 2007, 26(3):433-454.
[2] Liu M, Liu F Z, Huang R Q, et al. Deep-Seated Large-Scale Toppling Failure in Metamorphic Rocks:A Case Study of the Erguxi Slope in Southwest China[J]. Journal of Mountain Science, 2016,13(12):2094-2110.
[3] Lin P, Liu X L, Hu S Y, et al. Large Deformation Analysis of a High Steep Slope Relating to the Laxiwa Reservoir, China[J]. Rock Mechanics and Rock Engineering, 2016, 49:2253-2276.
[4] 黄润秋, 李渝生, 严明. 斜坡倾倒变形的工程地质分析[J].工程地质学报, 2017, 25(5):1165-1181. Huang Runqiu, Li Yusheng, Yan Ming. The Implication and Evaluation of Toppling Failure in Engineering Geology Practice[J]. Journal of Engineering Geology, 2017, 25(5):1165-1181.
[5] 包承纲. 我国岩土离心模拟技术的应用与发展[J]. 长江科学院院报, 2013, 30(11):55-66,71. Bao Chenggang. Application and Development of Centrifugal Modeling Technology for Geotechnical Engineering in China[J]. Journal of Yangtze River Scientific Research Institute, 2013, 30(11):55-66,71.
[6] Adhikary D P, Dyskin A V, Jewell R J, et al. A Study of the Mechanism of Flexural Toppling Failure of Rock Slopes[J]. Rock Mechanics and Rock Engineering, 1997, 30(2):75-93.
[7] 汪小刚, 张建红, 赵毓芝, 等. 用离心模型研究岩石边坡的倾倒破坏[J]. 岩土工程学报,1996,18(5):14-21. Wang Xiaogang, Zhang Jianhong, Zhao Yuzhi, et al. Investigations on Mechanism of Slope Toppling Failure by Centrifuge Model Testing[J]. Chinese Journal of Geotechnical Engineering, 1996,18(5):14-21.
[8] 吴昊, 赵维, 年廷凯, 等. 反倾层状岩质边坡倾倒破坏的离心模型试验研究[J]. 水利学报, 2018, 49(2):223-231. Wu Hao, Zhao Wei, Nian Tingkai, et al. Study on the Anti-Dip Layered Rock Slope Toppling Failure Based on Centrifuge Model Test[J]. Journal of Hydraulic Engineering, 2018, 49(2):223-231.
[9] 黄达, 马昊, 孟秋杰, 等. 软硬互层岩质反倾边坡弯曲倾倒离心模型试验与数值模拟研究[J]. 岩土工程学报, 2020, 42(7):1286-1295. Huang Da, Ma Hao, Meng Qiujie, et al. Centrifugal Model Test and Numerical Simulation for Anaclinal Rock Slopes with Soft-Hard Interbedded Structures[J]. Chinese Journal of Geotechnical Engineering, 2020, 42(7):1286-1295.
[10] Leandro R A, Iván G, Roberto M. Analysisof a Complex Toppling-Circular Slope Failure[J]. Engineering Geology, 2010, 114(1):93-104.
[11] 马昊,黄达,石林.基于断距-层厚特征统计的反倾边坡S型破坏演化数值模拟[J].工程地质学报, 2020, 28(6):1160-117. Ma Hao, Huang Da, Shi Lin. Numerical Simulationof S-Shaped Failure Evolution of Anti-Dip Slope Based on Statistics of Broken Length and Layer Thickness[J]. Journal of Engineering Geology, 2020, 28(6):1160-1171.
[12] 孙东亚, 彭一江, 王兴珍. DDA数值方法在岩质边坡倾倒破坏分析中的应用[J]. 岩石力学与工程学报, 2002, 21(1):39-42. Sun Dongya, Peng Yijiang, Wang Xingzhen. Application of DDA Method in Stability Analysis of Topple Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(1):39-42.
[13] 程东幸, 刘大安, 丁恩保, 等. 层状反倾岩质边坡影响因素及反倾条件分析[J]. 岩土工程学报, 2005, 27(11):1362-1366. Cheng Dongxing, Liu Daan, Ding Enbao, et al. Analysis on Influential Factors and Toppling Conditions of Toppling Rock Slope[J]. Chinese Journal of Geotechnical Engineering, 2005, 27(11):1362-1366.
[14] 蔡跃, 三谷泰浩, 江琦哲郎. 反倾层状岩体边坡稳定性的数值分析[J]. 岩石力学与工程学报, 2008,27(12):2517-2522. Cai Yue, Mitani Yasuhiro, Esaki Tetsuro. Numerical Analysis of Stability for an Antidip Stratified Rock Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008,27(12):2517-2522.
[15] 李明霞, 董联杰. 层状反倾边坡变形特征及影响因素分析[J]. 计算力学学报, 2015,32(6):831-837. Li Mingxia, Dong Lianjie. Analysis on Influential Factors and Deformation Characteristics of Toppling Slope[J]. Chinese Journal of Computational Mechanics, 2015,32(6):831-837.
[16] Adhikary D P, Dyskin A V. Modelling of Progressive and Instantaneous Failures of Foliated Rock Slopes[J]. Rock Mechanics and Rock Engineering, 2007, 40(4):349-362.
[17] Itasca Consulting Group Inc. UDEC (Universal Distinct Element Code), Version 6.0[Z]. Minneapolis:Itasca, 2014.
[18] Diederichs M S, Kaiser P K. Stability of Large Excavation in Laminated Hard Rock Masses:The Voussoir Analogue Revisited[J]. International Journal of Rock Mechanics and Mining Sciences. 1999, 36(1):97-117.
[19] Zheng Y, Chen C X, Liu T T, et al. Study on the Mechanisms of Flexural Toppling Failure in Anti-Inclined Rock Slopes Using Numerical and Limit Equilibrium Models[J]. Engineering Geology, 2018,237:116-128.
[20] Cho N, Martin C D, Sego D C. A Clumped Particle Model for Rock[J]. International Journal of Rock Mechanics and Mining Sciences, 2007, 44(7):997-1010.
[21] 赵华, 李文龙, 卫俊杰, 等. 反倾边坡倾倒变形演化过程的模型试验研究[J]. 工程地质学报, 2018, 26(3):749-757. Zhao Hua, Li Wenlong, Wei Junjie, et al. Model Test Study on Toppling Deformation Evolution Process of Counter-Tilt Slope[J]. Journal of Engineering Geology, 2018, 26(3):749-757.
[22] 刘毅, 赵斌滨, 殷坤龙,等.基于正交设计的麻柳林滑坡稳定性敏感分析[J]. 地球科学, 2019, 44(2):677-684. Liu Yi, Zhao Binbin, Yin Kunlong, et al. Sensitivity Analysis of Maliulin Landslide Stability Based on Orthogonal Design[J]. Earth Science,2019, 44(2):677-684.
[23] 倪恒, 刘佑荣, 龙治国. 正交设计在滑坡敏感性分析中的应用[J]. 岩石力学与工程学报, 2002, 21(7):989-992. Ni Heng, Liu Yourong, Long Zhiguo. Applications of Orthogonal Design to Sensitivity Analysis of Landslide[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(7):989-992.
[24] 游昆骏. 澜沧江苗尾水电站右坝肩边坡倾倒岩体开挖变形晌应及稳定性研究[D]. 成都:成都理工大学, 2014. You Kunjun. Study on Deformation Response and Stability of Toppling Deformation Rock by Excavation at Right Bank Abutment of Miaowei Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2014.
[25] 赵永辉. 澜沧江古水水电站争岗巨型滑坡形成机理及演化过程研究[D]. 成都:成都理工大学, 2016. Zhao Yonghui. Research on the Formation and Evolution Mechanism of Zhenggang Giant Landslide of Gushui Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2016.
[26] 贺宇航. 澜沧江苗尾水电站坝肩倾倒岩体开挖变形响应研究[D].成都:成都理工大学, 2015. He Yuhang. Study on Deformation Response of Toppling Deformation Rock by Excavation at Miaowei Hydropower Station on Lancang River[D]. Chengdu:Chengdu University of Technology, 2015.
[27] 张御阳, 裴向军, 唐皓, 等. 反倾岩坡倾倒变形结构面影响效应研究[J]. 工程地质学报, 2018, 26(4):844-851. Zhang Yuyang, Pei Xiangjun, Tang Hao, et al. Experimental Tests for Impact of Structural Surfaces to Toppling Deformation in Anti-Dipped Rock Slopes[J]. Journal of Engineering Geology, 2018, 26(4):844-851.
[28] 王梓龙,裴向军,张御阳,等. 松动岩体工程特性研究:以雅砻江楞古水电站松动岩体为例[J].吉林大学学报(地球科学版), 2019, 49(5):1376-1388. Wang Zilong, Pei Xiangjun, Zhang Yuyang, et al. Engineering Characteristics of Loose Rock Mass:Taking Loose Rock Mass of Lenggu Hydropower Station in Yalong River as an Example[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(5):1376-1388.
[29] 白永健,王运生,葛华,等. 金沙江深切河谷百胜滑坡演化过程及成因机制[J].吉林大学学报(地球科学版),2019,49(6):1680-1688. Bai Yongjian,Wang Yunsheng,Ge Hua,et al. Formation Evolution and Genetic Mechanism of Baisheng Landslide in the Deep-Incised Valley of Jinsha River[J]. Journal of Jilin University (Earth Science Edition),2019,49(6):1680-1688.
[30] 欧小强,王奭,李永亮,等.拉林铁路板块缝合带隧道地应力分析[J].吉林大学学报(地球科学版), 2019, 49(6):1689-1697. Ou Xiaoqiang,Wang Shi,Li Yongliang,et al. In-Situ Stress Analysis of Tunnel in Plate Suture Zone of Lhasa-Nyingchi Railway[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(6):1689-1697.
[1] 彭恺然, 刘红帅, 平新雨, 程旷. CFD-DEM耦合模拟中拖曳力模型精度[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1400-1407.
[2] 王婷, 兰景岩, 宋锡俊, 吴连斌, 蔡金豆, 史庆旗. 基于离心模型试验的海域软土场地设计反应谱特征分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1391-1399.
[3] 洪勇, 李子睿, 唐少帅, 王陆阳, 李亮. 平均粒径对砂土剪切特性的影响及细观机理[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1814-1822.
[4] 王吉亮,杨静,李会中,黄孝泉,刘冲平,白伟,郝文忠,朱永生. 乌东德水电站左岸拱肩槽边坡稳定性[J]. 吉林大学学报(地球科学版), 2013, 43(2): 528-536.
[5] 邓继新, 韩德华. 应力松弛作用对未固结砂岩等效弹性性质的影响[J]. J4, 2011, 41(1): 283-291.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[2] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[3] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[4] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[5] 纪宏金,孙丰月,陈满,胡大千,时艳香,潘向清. 胶东地区裸露含金构造的地球化学评价[J]. J4, 2005, 35(03): 308 -0312 .
[6] 初凤友,孙国胜,李晓敏,马维林,赵宏樵. 中太平洋海山富钴结壳生长习性及控制因素[J]. J4, 2005, 35(03): 320 -0325 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 李涛, 吴胜军,蔡述明,薛怀平,YASUNORI Nakayama. 涨渡湖通江前后调蓄能力模拟分析[J]. J4, 2005, 35(03): 351 -0355 .
[9] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[10] 章光新,邓伟,何岩,RAMSIS Salama. 水文响应单元法在盐渍化风险评价中的应用[J]. J4, 2005, 35(03): 356 -0360 .