吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1391-1399.doi: 10.13278/j.cnki.jjuese.20200323

• 岩土防灾与减灾 • 上一篇    下一篇

基于离心模型试验的海域软土场地设计反应谱特征分析

王婷1,2, 兰景岩1,2, 宋锡俊1,2, 吴连斌1,2, 蔡金豆1,2, 史庆旗1,2   

  1. 1. 桂林理工大学土木与建筑工程学院, 广西 桂林 541004;
    2. 桂林理工大学广西岩土力学与工程重点实验室, 广西 桂林 541004
  • 收稿日期:2020-12-30 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 兰景岩(1981-)男,副研究员,博士,主要从事岩土地震工程方面的研究,E-mail:lanjy1999@163.com E-mail:lanjy1999@163.com
  • 作者简介:王婷(1996-),女,硕士研究生,主要从事地震动场地效应等方面的研究,E-mail:892312628@qq.com
  • 基金资助:
    广西自然科学基金项目(2018GXNSFAA281183);广西高等学校千名中青年骨干教师培育计划项目(2020);广西岩土力学与工程重点实验室开放基金(桂科能19-Y-21-4);国家自然科学基金项目(52168067)

Characteristic Analysis of Design Response Spectrum of Sea Soft Soil Site Based on Centrifugal Model Tests

Wang Ting1,2, Lan Jingyan1,2, Song Xijun1,2, Wu Lianbin1,2, Cai Jindou1,2, Shi Qingqi1,2   

  1. 1. College of Civil and Architectural Engineering, Guilin University of Technology, Guilin 514004, Guangxi, China;
    2. Guangxi Key Laboratory of Geotechnical Geomechanics and Engineering, Guilin University of Technology, Guilin 541004, Guangxi, China
  • Received:2020-12-30 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the Natural Science Foundation of Guangxi Province (2018GXNSFAA281183), the Training Program for a Thousand of Young and Middle-Aged Backbone Teachers in Guangxi Universities (2020), the Open Fund of the Guangxi Key Laboratory of Geotechnical Mechanics and Engineering (Gui Ke Neng 19-Y-21-4) and the National Natural Science Foundation of China (52168067)

摘要: 为了揭示和掌握海域软土场地的地震动特征,给海域工程抗震设计提供科学可靠的设计反应谱,更好地服务于工程抗震设计,先设计并构建了上覆有水的海域饱和软土场地的离心模型,在100g的离心环境下开展了5组振动台试验,获取了不同强度地震输入条件下海底地表处的加速度结果;再以当前国内外普遍采用的3种设计谱拟合标定方法对加速度反应谱进行拟合回归,并对不同方法得到的拟合参数进行了对比分析。结果表明:我国现行建筑抗震规范设计谱与试验反应谱差异较大,标定的设计谱特征周期值明显偏小,对长周期工程抗震存在设计风险;而基于美国抗震规范的设计谱与试验反应谱具有良好的一致性,标定的设计谱特征周期较为合理,但设计谱平台值明显偏小,工程上也偏于不安全;中美两国规范设计谱均有各自的局限性。相比之下,薄景山团队提出的设计谱标定的工程方法和标定结果较为合理,设计谱特征周期与试验反应谱吻合度较高。

关键词: 海域饱和软土场地, 动力离心模型试验, 加速度反应谱, 设计反应谱标定

Abstract: In order to reveal and master the ground motion characteristics of marine soft soil site, to provide scientific and reliable design response spectrum as the basis for seismic design of marine engineering, better serve the engineering anti-seismic design, in this study, a centrifugal model of marine saturated soft soil site covered with water was designed and constructed. Five sets of shaking table tests were carried out under a 100g centrifugal environment, and the acceleration results at the seabed surface under different seismic input conditions were obtained; Three commonly used design spectrum fitting calibration methods were used to fit and regress the acceleration response spectrum, and the fitting parameters obtained by different methods were compared and analyzed. The results show that:There is a big difference between the design spectrum and the test response spectrum of the current building seismic code in my country, the characteristic period value of the calibrated design spectrum is obviously small, so there is a design risk for the seismic resistance of long-period projects; While the design spectrum and test response spectrum based on the U.S. seismic code have good consistency, the characteristic period of the calibrated design spectrum is relatively reasonable, but the design spectrum platform value is obviously too small, therefore the engineering is unsafe either. In contrast, the calibration results of design spectrum calibration proposed by Bo Jingshan research team are more reasonable, and the characteristic period of design spectrum is in good agreement with the test response spectrum.

Key words: marine saturated soft soil sites, dynamic centrifugal model tests, acceleration response spectra, design response spectrum calibration

中图分类号: 

  • TU47
[1] 梁钟琪.土力学及路基[M]. 北京:中国铁路出版社, 1991. Liang Zhongqi. Soil Mechanics and Roadbed[M]. Beijing:China Railway Construction Corporation, 1991.
[2] 白冰, 肖宏彬.软土工程若干理论与应用[M]. 北京:中国水利水电出版社, 2002. Bai Bing, Xiao Hongbin. Some Theories and Applications of Soft Soil Engineering[M]. Beijing:China Water and Power Press, 2002.
[3] 祝卫东.温州软土与台州软土工程特性及其比较分析[D].杭州:浙江大学, 2003. Zhu Weidong. Engineering Properties and Comparison Analysis of Wenzhou Soft Clays and Taizhou Soft Clays[D]. Hangzhou:Zhejiang University, 2003.
[4] 缪林昌. 软土力学特性与工程实践[M]. 北京:科学出版社, 2012. Miu Linchang. Soft Soil Mechanical Properties and Engineering Practice[M]. Beijing:Science Press, 2012.
[5] 赵汉卿, 陈晓明, 李超, 等.渤海湾盆地垦利L油田古近系沙三上段优质储层物性控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2):653-661. Zhao Hanqing, Chen Xiaoming, Li Chao, et al. Control Factors of High Quality Reservoir in Upper Part of the 3rd Member of Eocene Shahejie Formation in Kenli L Oilfield, Bohai Bay Basin[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(2):653-661.
[6] 孙章庆, 汪登科, 韩复兴.复杂海底各种地震波的射线追踪与运动学特征[J]. 吉林大学学报(地球科学版), 2019, 49(4):1169-1181. Sun Zhangqing, Wang Dengke, Han Fuxing.Ray Tracing and Kinematic Characteristics of Different Types of Seismic Waves in Complex Seabed[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4):1169-1181.
[7] 胡进军, 杨泽西, 谢礼立. 海域地震动研究现状[J]. 世界地震工程, 2019, 35(3):28-36. Hu Jinjun, Yang Zexi, Xie Lili. Review on the Research of Offshore Ground Motions[J]. World Earthquake Engineering, 2019, 35(3):28-36.
[8] 郑天愉, 姚振兴, 谢礼立.海底强地面运动计算[J]. 地震工程与工程振动, 1985, 5(3):13-22. Zheng Tianyu, Yao Zhenxing, Xie Lili. Strong Motion of Ocean Bottom[J]. Earthquake Engineering and Engineering Vibration, 1985, 5(3):13-22.
[9] 冯启民.海洋工程场址地震动的分析方法[J]. 地震工程与工程振动, 1990, 10(1):81-88. Feng Qimin. Analysis Method of Seismic Motion of Marine Engineering Site[J]. Earthquake Engineering and Engineering Vibration, 1990, 10(1):81-88.
[10] 朱镜清, 周健, 朱达力. 海底淤泥层对海洋工程地震作用环境的影响问题[J]. 地震工程与工程振动, 1999, 19(3):1-6. Zhu Jingqing, Zhou Jian, Zhu Dali. Problems of Effect of Seafloor Silt on Earthquake Influence Environment of Oceanic Engineering[J]. Earthquake Engineering and Engineering Vibration, 1999, 19(3):1-6.
[11] Petukhin A, Iwata T, Kagawa T. Study on the Effect of the Oceanic Water Layer on Strong Ground Motion Simulations[J]. Earth Planets & Space, 2010, 62(8):621-630.
[12] Diao H, Hu J, Xie L. Effect of Seawater on Incident Plane P and SV Waves at Ocean Bottom and Engineering Characteristics of Offshore Ground Motion Records of the Southern California, USA[J]. Earthquake Engineering and Engineering Vibration, 2014, 13(2):181-194.
[13] 兰景岩, 卢滔, 吕悦军, 等.海底软弱场地非线性地震反应及其应用研究[J]. 土木工程学报, 2013(增刊1):172-179. Lan Jingyan, Lu Tao, Lü Yuejun, et al. Nonlinear Seismic Ground Response Analysis and Implications for Soft Site in Bohai Seafloor[J]. China Civil Engineering Journal, 2013, (Sup.1):172-179.
[14] 荣棉水, 彭艳菊, 吕悦军. 导管架式海洋平台的地震动时程分析[J]. 世界地震工程, 2009, 25(1):25-30. Rong Mianshui, Peng Yanju, Lü Yuejun. Seismic Time History Analysis of a Jacket to Offshore Platform[J]. World Earthquake Engineering, 2009, 25(1):25-30.
[15] 杨铭, 胡进军, 谭景阳, 等. 日本DONET1海域地震动数据及其特征初步分析[J]. 地震工程与工程振动, 2020, 40(3):139-147. Yang Ming, Hu Jinjun, Tan Jingyang, et al. Offshore Ground Motion Data in DONET1 of Japan and Preliminary Analysis on Its Characteristics[J]. Earthquake Engineering and Engineering Vibration, 2020, 40(3):139-147.
[16] 兰景岩. 近海海域工程地震研究中的若干科学问题探讨[D]. 北京:北京工业大学, 2019. Lan Jingyan. Discussion on Some Scientific Problems in Earthquake Research of Offshore Sea Area Engineering[D]. Beijing:Beijing University of Technology, 2019.
[17] Boore D M. Simulation of Ground Motion Using the Stochastic Method[J]. Pure and Applied Geophysics, 2003, 160(3/4):635-676.
[18] Borcherdt R D. Effect of Local Geology on Ground Motion near San Francisco Bay[J]. Bulletin of the Seismological Society of America, 1970, 60(1):29-61.
[19] 大琦顺彦. 地震动的谱分析入门[M]. 田琪, 译. 北京:地震出版社, 2008:171-174. Osaki Yorihiko. Shin Jishindo No Spectre Kaiseki Nyumon[M]. Translated by Tian Qi. Beijing:Seismological Press, 2008:171-174.
[20] Steidl J H, Tumarkin A G, Archuleta R J. What Is a Reference Site?[J]. Bulletin of the Seismological Society of America, 1996, 86(6):1733-1748.
[21] 建筑抗震设计规范:GB 50011-2010[S]. 北京:中国建筑工业出版社, 2010. Code for Seismic Design of Buildings:GB 50011-2010[S]. Beijing:China Architecture & Building Press, 2010.
[22] Building Seismic Safety Council. NEHRP Recommended Provisions for Seismic Regulations for New Buildings and Other Structures[S]. Washington:[s.n.], 2020.
[23] 郭晓云, 薄景山, 张宇东, 等. 抗震设计反应谱的标定方法[J]. 世界地震工程, 2011, 27(1):66-71. Guo Xiaoyun, Bo Jingshan, Zhang Yudong, et al. Methods of Calibrating Seismic Design Response Spectrum[J]. World Earthquake Engineering, 2011, 27(1):66-71.
[24] 蒋晓涵. 设计反应谱标定的工程方法[D]. 三河:防灾科技学院, 2018. Jiang Xiaohan. Engineering Method of Calibrating Design Response Spectrum[D]. Sanhe:Institute of Disaster Prevention, 2018.
[25] 韩昕, 薄景山, 常晁瑜. 关于设计反应谱平台值及其标定方法的讨论[J]. 防灾科技学院学报, 2019, 21(3):7-15. Han Xin, Bo Jingshan, Chang Chaoyu. Discussion on the Design of Response Spectrum Platform Value and Its Calibration Method[J]. Journal of Institute of Disaster Prevention, 2019, 21(3):7-15.
[1] 秦胜伍, 张延庆, 张领帅, 苗强, 程秋实, 苏刚, 孙镜博. 基于Stacking模型融合的深基坑地面沉降预测[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1316-1323.
[2] 桑松魁, 王永洪, 张明义, 孔亮, 吴文兵, 陈志雄, 李兆龙, 张启军. 粉土与粉质黏土互层中静压桩桩土界面孔隙水压力[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1551-1559.
[3] 王永洪, 黄永峰, 张明义, 李长河, 苏雷, 仉文岗, 林沛元, 崔纪飞, 焉振. 静压桩承载力时间效应的研究进展[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1490-1505.
[4] 魏家斌, 王卫东, 吴江斌. 免共振沉桩过程对地表振动影响的FLAC3D数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1514-1522.
[5] 王永洪, 桑松魁, 张明义, 李长河, 韩勃, 袁炳祥, 项俊宁, 王振杰, 刘慧宁. 黏性土中静压桩沉桩过程现场试验及桩土界面桩侧土压力分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1535-1543.
[6] 巴振宁, 刘博佳, 付继赛. 排桩对柱面SH波散射问题研究:解析求解[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1306-1315.
[7] 崔纪飞, 饶平平, 李镜培. 新桩贯入对邻近再利用既有桩的影响[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1506-1513.
[8] 苏亮, 时伟, 水伟厚, 曹建萌. 高能级强夯法处理深厚吹填砂土地基现场试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1560-1569.
[9] 郎秋玲, 王伟, 高成梁. 基于组合权重与灰色关联度分析法的地铁深基坑开挖稳定性评价[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1823-1832.
[10] 张明义, 刘雪颖, 王永洪, 白晓宇, 桑松魁. 粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1804-1813.
[11] 李雨浓, Lehane B M. 双层高岭黏土中沉桩特性模型试验[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1778-1784.
[12] 孙超, 邵艳红, 王寒冬. 支挡式结构物水平冻胀力研究进展与思考[J]. 吉林大学学报(地球科学版), 2018, 48(3): 784-798.
[13] 谭福林, 胡新丽, 张玉明, 何春灿, 章涵. 考虑渐进破坏过程的滑坡推力计算方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 193-202.
[14] 吴有平, 张可能, 刘杰, 何杰. 侧向约束下柔性桩复合地基沉降特性[J]. 吉林大学学报(地球科学版), 2017, 47(3): 818-825.
[15] 桂跃,余志华,刘海明,丁祖德,张庆. 滇池固化淤泥重塑土的重塑时机及强度恢复特性试验[J]. 吉林大学学报(地球科学版), 2014, 44(6): 1928-1935.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[2] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[3] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[4] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[5] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[6] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[7] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[8] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .