吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (2): 638-644.doi: 10.13278/j.cnki.jjuese.20200035
• 地球探测与信息技术 • 上一篇
周越1, 曾昭发1, 唐海燕1, 张建民1, 何滔2
Zhou Yue1, Zeng Zhaofa1, Tang Haiyan1, Zhang Jianmin1, He Tao2
摘要: 滑坡是影响路桥安全的重要隐伏地质灾害。地球物理方法作为一种无损高效的勘察方法,可有效查明滑坡体内部的地质构造及滑面等特征。本文以张榆线崇礼隧道出口段滑坡为例,采用高密度电阻率法和剪切波速测试,并结合钻孔资料对滑坡体的地球物理特征进行了分析。该滑坡体视电阻率值和剪切波速值具有明显的垂向差异性,一定程度反映了该滑坡体岩土体性质、密实度、含水率的垂向差异性,综合分析认为视电阻率值和剪切波速值较高的强风化流纹岩顶面为潜在滑面。在此基础之上,基本确定了滑坡体由冲洪积体和坡积物组成,附着于流纹岩体之上,横向长度达300 m,纵向长度260 m,滑坡体厚度达20~30 m。同时,根据高密度电阻率三维剖面分析,认为滑坡体底部滑趾处为剪出口位置。最后,基于滑坡体地球物理特征建立了滑坡体地质模型。
中图分类号:
[1] 林松,王薇,邓小虎,等. 三峡库区典型滑坡地质与地球物理电性特征[J]. 吉林大学学报(地球科学版),2020, 50(1):273-284. Lin Snog, Wang Wei, Deng Xiaohu, et al.Geological and Geophysical Electric Characteristics of Typical Landslides in Three Gorges Reservoir[J].Journal of Jilin University (Earth Science Edition), 2020, 50(1):273-284. [2] 张光保. 褚家营巨型滑坡的高密度电法勘察及效果分析[J]. 地球物理进展,2012, 27(6):2716-2721. Zhang Guangbao. Exploration and Effectiveness Analysis of High-Density Resistivity Method on Chujiaying Giant Landslide Site[J]. Progress in Geophysics, 2012, 27(6):2716-2721. [3] 邓清禄,王学平. 黄土坡滑坡的发育历史:坠覆-滑坡-改造[J].地球科学:中国地质大学学报,2000, 25(1):44-50. Deng Qinglu, Wang Xueping. Growth History of Huangtu Polandslide:Down-Landsliding-Modification[J]. Earth Siencec:Journal of China University of Geosciencese, 2000, 25(1):44-50. [4] 张明,胡瑞林,殷跃平,等. 川东缓倾红层中降雨诱发型滑坡机制研究[J]. 岩石力学与工程学报,2014, 33(增刊2):3783-3790. Zhang Ming, Hu Ruilin, Yin Yueping, et al. Study on Mechanism of Landslide by Rainfallin Gently Inclined Red Stratum in East Sichuan Basin[J]. Chinese Journal of Rock Mechanics and Engineering, 2014, 33(Sup. 2):3783-3790. [5] Lapenna V, Lorenzo P, Perrone A, et al. 2D Electrical Resistivity Imaging of Some Complex Landslides in Lucanian Apennine Chain, Southern Italy[J]. Geophysics, 2005, 70:11-18. [6] Torgoev A, Lamair L, Torgoev I, et al. A Review of Recent Case Studies of Landslides Investigated in the Tien Shan Using Microseismic and Other Geophysical Methods, Earthquake-Induced Landslides[J]. Springer Berlin Heidelberg, 2013, 51:285-294. [7] 汪丁建,唐辉明,李长冬,等.强降雨作用下堆积层滑坡稳定性分析[J]. 岩土力学,2016, 37(2):439-445. Wang Dingjian, Tang Huiming, Li Changdong, et al.Stability Analysis of Colluvial Landslide Due to Heavy Rainfall[J]. Rock and Soil Mechanics, 2016, 37(2):439-445. [8] Friedel S,Thielen A, Springman S, et al. Investigation of a Slope Endangered by Rainfall-Induced Landslides Using 3D Resistivity Tomography and Geotechnical Testing[J]. Journal of Applied Geophysics, 2006, 60(2):100-114. [9] Perrone A,Lapenna V, Piscitelli S, et al. Electrical Resistivity Tomography Technique for Landslide Investigation:A Review[J]. Earth-Science Reviews, 2014, 135:65-82. [10] Bell R, Kruse J, Garcia, A, et al. Subsurface Investigations of Landslides Using Geophysical Methods:Geoelectrical Applications in the Swabian Alb (Germany)[J]. Geographica Helvetica, 2006, 61(3):201-208. [11] Wetzel K, Sass O,Restorff C, et al. Mass Movement Processes in Unconsolidated Pleistocene Sediments:A Multimethod Investigation of the "Hochgraben" (Jenbach/Upper Bavaria)[J]. Erdkunde, 2006, 60:246-260. [12] Rubin Y, Hubbard S. Hydrogeophysics[M].Dordrecht:Springer, 2005:100-107. [13] Perrone A,Iannuzzi A, Lapenna V, et al.High-Resolution Electrical Imaging of the Varco d'Izzo[J]. Appl Geophys, 2004, 56(1):17-29. [14] 孔繁良,陈超,孙冠军. 高密度电法在清江水布垭库区滑坡调查中的应用[J]. 工程地球物理学报,2008, 5(2):201-204. Kong Fanliang, Chen Chao, Sun Guanjun. Application of High Density Electric Method to Landslide Investigation in Shuibuya Reservoir[J]. Chinese Journal of Engineering Geophysics, 2008, 5(2):201-204. [15] Carpentier S, Konz M, Fischer R, et al. Geophysical Imaging of Shallow Subsurface Topography and Its Implication for Soil Slip Susceptibility in the Urseren Valley, Switzerland[J]. Appl Geophys, 2012, 83:46-56. [16] Sass O, Bell R, Glade T. Comparison of GPR, 2D-Resistivity and Traditional Techniques for the Subsurface Exploration of the Öschingen Landslide, Swabian Alb (Germany)[J]. Geomorphology, 2008, 93(1):89-103. [17] Loke M H. Res2DINV Software User's Manual[M]. Penang:University Sains Malaysia, 1997. [18] Reynolds J M. An Introduction to Applied and Environment Geophysics, Chichester[M]. Chichester:John Wiley & Sons, 1997. [19] Loke M H. Electrical Imaging Surveys for Environmental and Engineering Studies:A Practical Guide to 2-D and 3-D Surveys[Z]. 1999. |
[1] | 安玉科, 樊江, 马胜午, 马建全, 高娟, 毛立军. 堆积阶地古老滑坡识别方法及其在线状工程地质勘察中的应用[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1787-1794. |
[2] | 林松, 王薇, 邓小虎, 查雁鸿, 周红伟, 程邈. 三峡库区典型滑坡地质与地球物理电性特征[J]. 吉林大学学报(地球科学版), 2020, 50(1): 273-284. |
[3] | 束龙仓, 王明昭, 张惠潼, 张含明, 张乃鹏, 孙影, 孙超, 袁鹏杰. 咸淡水界面位置确定的综合方法(TEcG)及其应用[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1706-1713. |
[4] | 常晓军, 葛伟亚, 于洋, 赵宇, 叶龙珍, 张泰丽, 魏振磊. 福建省永泰县东门旗山滑坡诱发机理与防治措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1063-1072. |
[5] | 林剑, 张奇飞, 龙万学, 张红伟. 基于预警隶属度函数多模型融合的滑坡预警方法[J]. 吉林大学学报(地球科学版), 2019, 49(2): 477-484. |
[6] | 李论基, 姚青青, 安玉科. 老滑坡路段路堑开挖与超前支护效果[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1767-1777. |
[7] | 陈永珍, 吴纲, 孙红月, 尚岳全. 滑坡充气截排水有效性数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1427-1433. |
[8] | 赵金童, 牛瑞卿, 姚琦, 武雪玲. 雷达数据辅助下的滑坡易发性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1182-1191. |
[9] | 谭福林, 胡新丽, 张玉明, 何春灿, 章涵. 考虑渐进破坏过程的滑坡推力计算方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 193-202. |
[10] | 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212. |
[11] | 王孔伟, 常德龙, 李春波, 胡安龙, 魏东. 再论“滑坡群”——以三峡库区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1491-1501. |
[12] | 李鹏, 苏生瑞, 马驰, 黄璜, 徐继维. 堆积层-基岩接触面滑坡的形成机理——以祖师庙滑坡为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1471-1479. |
[13] | 秦胜伍, 马中骏, 刘绪, 李广杰, 彭帅英, 陈骏骏, 翟健健. 基于简化Newmark模型的长白山天池火山诱发崩塌滑坡危险性评价[J]. 吉林大学学报(地球科学版), 2017, 47(3): 826-838. |
[14] | 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178. |
[15] | 徐则民, 梅雪峰, 王礼荣, 张有为, 曾强, 郭丽丽. 滑坡预警中的降水时空变异性——以云南头寨沟为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 154-162. |
|