吉林大学学报(地球科学版) ›› 2017, Vol. 47 ›› Issue (5): 1471-1479.doi: 10.13278/j.cnki.jjuese.201705201

• 地质工程与环境工程 • 上一篇    下一篇

堆积层-基岩接触面滑坡的形成机理——以祖师庙滑坡为例

李鹏1,2,3, 苏生瑞1, 马驰1,4, 黄璜1, 徐继维1,3   

  1. 1. 长安大学地质工程与测绘学院, 西安 70054;
    2. 国土资源部岩土工程开放研究实验室, 西安 710054;
    3. 国土资源部黄土地质灾害重点实验室, 西安 710054;
    4. 中煤西安设计工程有限责任公司, 西安 710054
  • 收稿日期:2016-12-15 出版日期:2017-09-26 发布日期:2017-09-26
  • 作者简介:李鹏(1987),男,博士研究生,主要从事地质工程方面的研究,E-mail:lipeng198782@163.com
  • 基金资助:
    中央高校基本科研业务费项目(310826151048);国土资源部黄土地质灾害重点实验室开放基金项目(KLGLAMLR201506);四川交通建设科技项目(2015A1-3)

Formation Mechanism of Landslides with Accumulation Layer-Bedrock Contact Surface:Taking Zushimiao Landslide as an Example

Li Peng1,2,3, Su Shengrui1, Ma Chi1,4, Huang Huang1, Xu Jiwei1,3   

  1. 1. College of Geology Engineering and Geomatics, Chang'an University, Xi'an 710054, China;
    2. Open Research Laboratory of Geotechnical Engineering, MLR, Xi'an 710054, China;
    3. Key Laboratory for Geo-Hazards in Loess Area, MLR, Xi'an 710054, China;
    4. China Coal Xi'an Design Engineering Co., LTD., Xi'an 710054, China
  • Received:2016-12-15 Online:2017-09-26 Published:2017-09-26
  • Supported by:
    Supported by the Fundamental Research Funds for the Central Universities of China(310826151048),Key Laboratory Program of the Key Laboratory for Geo-Hazards in Loess Area, MLR(KLGLAMLR201506)and Sichuan Transportation Construction Science and Technology Project(2015A1-3)

摘要: 为了研究堆积层-基岩接触面滑坡的形成机理,以陕西省岚皋县广泛分布的堆积层-基岩接触面滑坡为研究对象,采用野外调查和数理统计的方法,总结了该类型滑坡的基本特征,并以祖师庙滑坡为例,借助室内试验和数值模拟手段,研究了堆积层-基岩接触面滑坡的形成机理。结果表明:1)堆积层-基岩接触面滑坡主要发育在坡度为20 °~40 °、下伏基岩为碎裂状结构的斜坡,多为浅表层滑坡;2)碎石土和堆积层-基岩接触面的内摩擦角随含水量增大而降低,堆积层-基岩接触面是斜坡变形破坏的软弱结构面;3)细颗粒物质的增加降低了堆积层-基岩接触面的内摩擦角,且细颗粒粒径越小,内摩擦角也越小,在饱和状态下降幅度越大;4)因细颗粒物质在堆积层-基岩接触面处聚集造成的强度降低和因水文地质条件改变造成的滑带土饱和是祖师庙滑坡主要的诱发因素。研究结果对揭示堆积层-基岩接触面滑坡的形成机理和地质灾害防治具有一定的指导意义。

关键词: 堆积层-基岩接触面, 滑坡, 碎石土, 软弱结构面, 岚皋县, 形成机理

Abstract: In order to research the mechanism of the landslides with accumulation layer-bedrock contact surface, which are widely distributed in Langao County, Shaanxi Province, the authors summarized the basic characteristics of the landslides through field investigation, laboratory test and numerical simulation, and mathematical statistics by taking the Zushimiao landslide as an example. The formation mechanism of landslide with accumulation layer-bedrock contact surface is concluded as follows:1) The landslides with accumulation layer-bedrock contact surface are mainly developed in the slopes with 20°-40° gradient and their underlying bedrock fragmented, mostly the shallow surface landslides; 2) The internal friction angle of gravel soil and the accumulation layer-bedrock contact surface decreases with the increasing of the water content, and the contact surface is the weak structural plane of the slope deformation; 3) The increase of fine particles reduces the internal friction angle of the contact surface, and the smaller the particle diameter is, the smaller the internal friction angle, and the greater the decrease in the saturated state; 4) The strength decrease caused by the small particle soil at the interface between accumulation layer and bedrock and the saturation of slip zone soil caused by the change of hydro-geological conditions are the main predisposing factors of the Zushimiao landslide. The research results have certain guiding significance for revealing the formation mechanism of landslide and the prevention and control of geological hazards.

Key words: accumulation layer-bedrock contact surface, landslide, gravel soil, weak structural plane, Langao County, formation mechanism

中图分类号: 

  • P642.21
[1] 刘传正,王恭先,崔鹏.地质灾害防治研究现状与展望[C]//中国科学技术学会.2008-2009地质学学科发展报告.北京:中国科学技术出版社,2008:17. Liu Chuanzheng, Wang Gongxian, Cui Peng. Status and Outlook on Geohazards Mitigation[C]//China Association for Science and Technology. Report on Advances in Geological Science. Beijing:China Science and Technology Press,2008:17.
[2] 成永刚.近二十年来国内滑坡研究的现状及动态[J].地质灾害与环境保护, 2003, 14(4):1-5. Cheng Yonggang. Current Situation and Developments of Landslide Study in China in Recent Twenty Years[J].Journal of Geological Hazards and Environment Preservation, 2003, 14(4):1-5.
[3] 刘广润,晏鄂川,练操.论滑坡分类[J].工程地质学报,2002,10(4):339-342. Liu Guangrun, Yan Echuan, Lian Cao. Discuss on Classical of Landslides[J].Journal of Engineering Geology, 2002,10(4):339-342.
[4] 贺可强,阳吉宝,李显忠,等.堆积层滑坡预测预报及其防治[M].北京:地震出版社,1996. He Keqiang, Yang Jibao, Li Xianzhong, et al. Prediction and Mitigation of Accumulation Landslide[M]. Beijing:Seismological Press, 1996.
[5] 蒋建平,罗国煜.土坡中的优势结构面分析[J].工程地质学报,2000,8(4):438-441. Jiang Jianping, Luo Guoyu. Analysis of Preferred Plane in the Soil Slope[J].Journal of Engineering Geology, 2000,8(4):438-441.
[6] 罗国煜,王培清,吴浩,等.敷溪口松动变形边坡稳定性和破坏机制浅析[J].湖南水利,1981,1(1):12-16. Luo Guoyu, Wang Peiqing, Wu Hao, et al. Analysis on Stability and Failure Mechanism of Loose and Deformed Slope in Fuxikou[J].Hunan Hydro, 1981,1(1):12-16.
[7] 朱大鹏.三峡库区典型堆积层滑坡复活机理及变形预测研究[D].武汉:中国地质大学,2010. Zhu Dapeng. Revival Mechanism and Deformation Prediction of Typical Accumulative Landslide in the Three Gorges Reservoir[D].Wuhan:China University of Geoscience, 2010.
[8] 蒋建平,李晓昭,罗国煜.岩土优势结构面的储运水效应[J].水科学进展,2007,18(1):34-38. Jiang Jianping, Li Xiaozhao, Luo Guoyu. Storage and Movement Effect of Water on Rock-Soil Preferred Structural Plane[J]. Advance in Water Science,2007,18(1):34-38.
[9] Jeager J C. Friction of Rocks and Stability of Rock Slopes[J]. Geotechnique, 1971,21:91-134.
[10] Barton N R, Choubey V. The Shear Strength of Rock Joint in Theory and Practice[J]. Rock Mechanics, 1977,10:1-54.
[11] 孙广忠.岩体结构力学[M].北京:科学出版社,1988. Sun Guangzhong. Rock Mass Structure Mechanics[M]. Beijing:Science Press, 1988.
[12] 夏才初,孙宗颀.工程岩体节理力学[M].上海:同济大学出版社,2002. Xia Caichu, Sun Zongqi. Engineering Mechanics of Rock Joints[M]. Shanghai:Tongji University Press, 2002.
[13] 冯大阔.粗粒土与结构接触面三维本构规律、机理与模型研究[D].北京:清华大学,2012. Feng Dakuo. Three-Dimensional Constitutive Laws, Mechanism and Model of Gravel-Structure Interfaces[D]. Beijing:Tsinghua University,2012.
[14] 施建勇,钱学德,朱月兵.垃圾填埋场土工合成材料的界面特性试验方法研究[J].岩土工程学报,2010,32(5):688-692. Shi Jianyong, Qian Xuede, Zhu Yuebing. Experimental Methods for Interface Behaviors of Geosynthetics in Landfills[J].Chinese Journal of Geotechnical Engineering, 2010,32(5):688-692.
[15] 马伟.钢-土界面特性及钢护筒嵌岩桩承载性状研究[D].重庆:重庆交通大学,2013. Ma Wei. Mechanism Properties of Steel-Soil Interface and Bearing Behaviors of Rock-Socketed Piles with Steel Tube[D]. Chongqing:Chongqing Jiaotong University, 2013.
[16] 熊炜.秦巴山区软弱变质岩浅表层滑坡成因机理研究[D].西安:长安大学,2012. Xiong Wei. Study on the Cause Mechanism of Shallow Landslide of Weak Metamorphic in the Qin-Ba Mountain Region[D]. Xi'an:Chang'an University, 2012.
[17] 徐彬,殷宗泽,刘述丽.膨胀土强度影响因素与规律的试验研究[J].岩土力学, 2011,32(1):44-50. Xu Bin, Yin Zongze, Liu Shuli. Experimental Study of Factors Influencing Expansive Soil Strength[J].Rock and Soil Mechanics, 2011,32(1):44-50.
[18] 唐晓松,邓楚键,郑颖人.三峡库区碎石土地基浸水试验研究[J].地下空间与工程学报,2008,4(2):225-229. Tang Xiaosong, Deng Chujian, Zheng Yingren. Study on the Test of Immersed Gravelly Soil Foundation in the Three-Gorges Zone[J]. Chinese Journal of Underground Space and Engineering, 2008,4(2):225-229.
[19] 时卫民,郑宏录,刘文平,等.三峡库区碎石土抗剪强度指标的试验研究[J].重庆建筑,2005(2):30-35. Shi Weimin, Zheng Honglu, Liu Wenping, et al. Experiment Research on Shear Strength Index of Gravel-Soil in Three Gorge Reservoir Area[J]. Chongqing Architecture, 2005(2):30-35.
[20] 高玮,胡瑞林. 基质胶结对土石混合体强度变形特性影[J]. 吉林大学学报(地球科学版),2015,45(4):1164-1172. Gao Wei, Hu Ruilin. Experimental Research on Strength Characteistics of Soil-Rock Mixture with Different Matrix Bonding[J]. Journal of Jilin Universtiy (Earth Science Edition), 2015,45(4):1164-1172.
[21] 马驰.堆积层-基岩接触面滑坡的变形特征及形成机理研究[D].西安:长安大学,2016. Ma Chi. Study on Features and Cause Mechanism of Debris-Bedrock Interface Landslide[D]. Xi'an:Chang'an University, 2016.
[1] 赵金童, 牛瑞卿, 姚琦, 武雪玲. 雷达数据辅助下的滑坡易发性评价[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1182-1191.
[2] 贾艳聪, 操应长, 林畅松, 王健. 东营凹陷博兴洼陷沙四上亚段滩坝优质储层形成机理与分布特征[J]. 吉林大学学报(地球科学版), 2018, 48(3): 652-664.
[3] 谭福林, 胡新丽, 张玉明, 何春灿, 章涵. 考虑渐进破坏过程的滑坡推力计算方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 193-202.
[4] 付建康, 罗刚, 胡卸文. 滑坡堰塞坝越顶溢流破坏的物理模型实验[J]. 吉林大学学报(地球科学版), 2018, 48(1): 203-212.
[5] 王孔伟, 常德龙, 李春波, 胡安龙, 魏东. 再论“滑坡群”——以三峡库区为例[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1491-1501.
[6] 秦胜伍, 马中骏, 刘绪, 李广杰, 彭帅英, 陈骏骏, 翟健健. 基于简化Newmark模型的长白山天池火山诱发崩塌滑坡危险性评价[J]. 吉林大学学报(地球科学版), 2017, 47(3): 826-838.
[7] 徐则民, 梅雪峰, 王礼荣, 张有为, 曾强, 郭丽丽. 滑坡预警中的降水时空变异性——以云南头寨沟为例[J]. 吉林大学学报(地球科学版), 2017, 47(1): 154-162.
[8] 安玉科, 吴玮江, 张文, 姚青青, 宋建, 张宏宏. 抗滑桩裂纹控制荷载结构设计法及工程应用[J]. 吉林大学学报(地球科学版), 2017, 47(1): 171-178.
[9] 钱文见, 尚岳全, 杜丽丽, 朱森俊. 充气位置及压力对边坡截排水效果的影响[J]. 吉林大学学报(地球科学版), 2016, 46(2): 536-542.
[10] 彭令, 徐素宁, 彭军还. 多源遥感数据支持下区域滑坡灾害风险评价[J]. 吉林大学学报(地球科学版), 2016, 46(1): 175-186.
[11] 王萌, 姜元俊, 黄栋, 李倩倩. 基于小流域的地震扰动区降雨型滑坡泥石流危险性评价方法[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1781-1788.
[12] 郭小花, 卢玉东, 李小林, 孙政, 李重阳, 张蓉. 黄河上游德恒隆-锁子滑坡堵塞黄河事件[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1789-1797.
[13] 蒋秀姿, 文宝萍, 蒋树, 冯传煌, 赵成, 李瑞冬. 甘肃舟曲锁儿头滑坡活动的主控因素分析[J]. 吉林大学学报(地球科学版), 2015, 45(6): 1798-1807.
[14] 邱丹丹, 牛瑞卿, 赵艳南, 武雪玲. 斜坡单元支持下地震滑坡危险性区划—以芦山地震为例[J]. 吉林大学学报(地球科学版), 2015, 45(5): 1470-1478.
[15] 王孔伟, 张帆, 邱殿明. 三峡库区黄陵背斜形成机理及与滑坡群关系[J]. 吉林大学学报(地球科学版), 2015, 45(4): 1142-1154.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!