吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1224-1230.doi: 10.13278/j.cnki.jjuese.20200086

• 地质工程与环境工程 • 上一篇    下一篇

黄原胶改性微米铁修复地下水中Cr(Ⅵ)污染的试验

赵勇胜1,2, 李彧1,2   

  1. 1. 吉林大学新能源与环境学院, 长春 130021;
    2. 吉林大学石油化工污染场地控制与修复技术国家地方联合工程实验室, 长春 130021
  • 收稿日期:2020-04-13 出版日期:2021-07-26 发布日期:2021-08-02
  • 作者简介:赵勇胜(1961-),男,教授,博士生导师,主要从事污染场地的模拟控制与修复方面的研究,E-mail:zhaoyongsheng@jlu.edu.cn
  • 基金资助:
    国家自然科学基金项目(41530636)

Study on Xanthan Gum Modified Micron Iron Slurry for Remediation of Cr(Ⅵ) Polluted Groundwater

Zhao Yongsheng1,2, Li Yu1,2   

  1. 1. College of New Energy and Environment, Jilin University, Changchun 130021, China;
    2. National Local Joint Engineering Laboratory of Petrochemical Pollution Site Control and Remediationn Technology, Jilin University, Changchun 130021, China
  • Received:2020-04-13 Online:2021-07-26 Published:2021-08-02
  • Supported by:
    Supported by the National Natural Science Foundation of China (41530636)

摘要: 为了解决微米铁的重力沉降问题,提高微米铁修复地下水Cr(Ⅵ)污染的原位修复效果,本文利用黄原胶对微米铁进行改性,并通过沉降实验探究改性微米铁浆液的稳定性,同时选择Cr(Ⅵ)作为目标污染物,探究黄原胶改性微米铁去除地下水Cr(Ⅵ)污染的降解能力。实验结果显示:当黄原胶的投加质量浓度分别为0.0、1.0、1.5、2.0、2.5、3.0、6.0 g/L时,改性微米铁浆液的悬浮稳定性逐渐得到加强,在5 h沉降实验结束时,对应的相对分光光度值分别为0.05、0.25、0.46、0.57、0.65、0.73和0.87;黄原胶具有抑制微米铁吸附Cr(Ⅵ)的能力,其可促进Cr(Ⅵ)的还原,提高Cr(Ⅵ)的去除率;随着黄原胶投加质量浓度的增加,对应的Cr(Ⅵ)去除率分别为33.4%、41.2%、47.4%、51.1%、53.0%、63.9%和64.1%;6.0 g/L黄原胶改性的微米铁浆液具有最佳的悬浮稳定性,黄原胶的投加提高了微米铁的反应活性,但当黄原胶投加质量浓度超过3.0 g/L时,其对Cr(Ⅵ)的去除率没有显著提高;黄原胶投加质量浓度越大,黄原胶的缓冲作用就越明显。

关键词: 地下水, 改性微米铁, 黄原胶, Cr(Ⅵ), 污染修复

Abstract: In order to solve the gravity sedimentation problem of micron iron, this paper uses xanthan gum to modify the micron iron. The stability of the modified micro iron slurry was explored through sedimentation experiments and the degradation ability was explored by removing Cr(Ⅵ) pollutant. The results show that when the dosages of xanthan gum are 0.0, 1.0, 1.5, 2.0, 2.5, 3.0, 6.0 g/L respectively, the corresponding relative spectrophotometric values are 0.05, 0.25, 0.46, 0.57, 0.65, 0.73, 0.87 at the end of 5 h sedimentation experiment. The suspension stability of the modified micro iron slurry is gradually strengthened with the increase of the mass concentration of xanthan. Xanthan has the ability to inhibit the adsorption of Cr(Ⅵ) by micron iron, which can promote the reduction of Cr(Ⅵ) and improve the removal rate. With the increase of the concentration of xanthan gum, the corresponding Cr(Ⅵ) removal rates are 33.37%, 41.23%, 47.45%, 51.05%, 52.97%, 63.91% and 64.08%, respectively. It can be seen from the results that 6.0 g/L xanthan gum modified micron iron slurry has the best suspension stability and the addition of xanthan gum improves the reactivity of micron iron. However, when the mass concentration of xanthan gum exceeds 3.0 g/L, the removal rate of Cr(Ⅵ) is not significantly improved. The greater the concentration of xanthan gum, the more obvious the buffering effect of xanthan gum.

Key words: groudwater, modified micron iron, xanthan gum, Cr (Ⅵ), pollution remediation

中图分类号: 

  • X523
[1] Wang T, Zhang L, Li C, et al. Synthesis of Core-Shell Magnetic Fe3O4@poly(m-Phenylenediamine) Particles for Chromium Reduction and Adsorption[J]. Environmental Science & Technology, 2015, 49:5654-5662.
[2] Troiano J M, Jordan D S, Hull C J, et al. Interaction of Cr(III) and Cr(Ⅵ) with Hematite Studied by Second Harmonic Generation[J]. The Journal of Physical Chemistry, 2013, 117:5164-6171.
[3] Vinod V T, Sashidhar B. Biosorption of Nickel and Total Chromium from Aqueous Solution by Gum Kondagogu (Cochlospermum Gossypium):A Carbohydrate Biopolymer[J]. Journal of Hazardous Materials, 2010, 178:851-860.
[4] 洪梅,任璇,杨慧萍. 稳定型与负载型FeS修复Cr(Ⅵ)污染地下水的可行性[J]. 吉林大学学报(地球科学版),2020,50(4):1182-1188. Hong Mei, Ren Xuan, Yang Huiping. Remediation of Cr(Ⅵ) Contaminated Groundwater by Stable and Loaded FeS[J]. Journal of Jilin University (Earth Science Edition),2020,50(4):1182-1188.
[5] Crane R A, Scott T B. Nanoscale Zero-Valent Iron:Future Prospects for an Emerging Water Treatment Technology[J]. Journal of Hazardous Materials, 2012, 211/212:112-125.
[6] Grieger K D, Fjordboge A, Hartmann N B, et al. Environmental Benefits and Risks of Zero-Valent Iron Nanoparticles (nZVI) for in Situremediation:Risk Mitigation or Trade-Off[J]. Journal of Contaminant Hydrology, 2010, 118(3/4):165-183.
[7] Kirschling T L, Gregory K B, Minkley J E G, et al. Impact of Nanoscale Zero Valent Iron on Geochemistry and Microbial Populations in Trichloroethylene Contaminated Aquifer Materials[J]. Environmental Science & Technology, 2010, 44(9):3474-3480.
[8] Kirschling T L, Golas P L, Unrine J M, et al. Microbial Bioavailability of Covalently Bound Polymer Coatings on Model Engineered Nanomaterials[J]. Environmental Science & Technology, 2011, 45(12):5253-5259.
[9] Phenrat T, Long T C, Lowry G V, et al. Partial Oxidation ("Aging") and Surface Modification Decrease the Toxicity of Nanosized Zerovalent Iron[J]. Environmental Science & Technology, 2009, 43:195-200.
[10] Comba S, Sethi R. Stabilization of Highly Concentrated Suspensions of Iron Nanoparticles Using Shear-Thinning Gels of Xanthan Gum[J]. Water Research, 2009, 43(15):3717-3726.
[11] Lee C, Kim J Y, Lee W I, et al. Bactericidal Effect of Zerovalent Iron Nanoparticles on Escherichia Coli[J]. Environmental Science & Technology, 2008, 42:4927-4933.
[12] Cantrell K J, Kaplan D I, Gilmore T J. Injection of Colloidal Fe0 Particles in Sand with Shear-Thinning Fluids[J]. Journal of Environmental Engineering, 1997, 123:786-791.
[13] Comba S, Braun J. An Empirical Model to Predict the Distribution of Iron Micro-Particles Around an Injection Well in a Sandy Aquifer[J]. Journal of Contaminant Hydrology, 2012, 132:1-11.
[14] Oostrom M, Wietsma T W, Covert M A, et al. Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer Additions[J]. Ground Water Monitoring and Remediation, 2007, 27:122-130.
[15] Vecchia E D, Luna M, Sethi R. Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum[J]. Environmental Science & Technology, 2009, 43(23):8942-8947.
[16] Tosco T, Gastone F, Sethi R. Guar Gum Solutions for Improved Delivery of Iron Particles in Porous Media:Part 2:Iron Transport Tests and Modeling in Radial Geometry[J]. Journal of Contaminant Hydrology, 2014, 166:34-51.
[17] Xin J, Han J, Zheng X, et al. Mechanism Insights into Enhanced Trichloroethylene Removal Using Xanthan Gum-Modified Microscale Zero-Valent Iron Particles[J]. Journal of Environmental Management, 2015, 150:420-426.
[18] Velimirovic M, Chen H, Simons Q, et al. Reactivity Recovery of Guar Gum Coupled mZVI by Means of Enzymatic Breakdown and Rising[J]. Journal of Contaminant Hydrology, 2012, 142/143:1-10.
[19] 韩军. 改性微米铁对三氯乙烯的去除效能研究[D]. 青岛:中国海洋大学, 2015. Han Jun.Study on the Removal Efficiency of Modified Micron Iron on Trichloroethylene[D]. Qingdao:Ocean University of China, 2015.
[20] Liu C C, Tseng D H, Wang C Y. Effects of Ferrous Irons on the Reductive Dechlorination of Thrichlore Thylene by Zero-Valent Iron[J]. Journal of Hazardous Materials, 2006, 136(3):706-713.
[1] 李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1801-1810.
[2] 刘元晴, 周乐, 李伟, 王新峰, 马雪梅, 吕琳, 尹凯, 孟顺祥. 鲁中山区中生代构造活动对现今岩溶地下水赋存规律的控制作用[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1811-1822.
[3] 潘维强, 张黎明, 丛宇. 深厚松散地层泄压槽治理井筒破坏判据及其与地下水水位关系[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1578-1586.
[4] 闫佰忠, 孙剑, 王昕洲, 李晓萌, 孙丰博, 付丹平. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1172-1181.
[5] 王哲, 付宇, 朱静思, 曹文庚. 华北典型河道地下水回补效果评价[J]. 吉林大学学报(地球科学版), 2021, 51(3): 843-853.
[6] 闫佰忠, 孙丰博, 李晓萌, 王玉清, 范成博, 陈佳琦. 气候变化与人类活动对石家庄市藁城区地下水位埋深的影响分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 854-863.
[7] 骆奕杉, 李兆. 基于统计方法评价沁水盆地南部煤层气开采对地下水环境的影响[J]. 吉林大学学报(地球科学版), 2021, 51(2): 516-525.
[8] 朱君, 李婷, 陈超, 谢添, 张艾明. 近海核电厂核素地下水释放通量的模型计算方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 201-211.
[9] 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216.
[10] 秦传玉, 郭超, 何宇. 胶态微泡沫在非饱和多孔介质中的迁移规律及影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1732-1740.
[11] 董林垚, 任洪玉, 雷俊山, 刘纪根. 地表暖化影响下温度示踪地下水流速方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 773-783.
[12] 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796.
[13] 虞未江, 贾超, 狄胜同, 李康, 袁涵. 基于综合权重和改进物元可拓评价模型的地下水水质评价[J]. 吉林大学学报(地球科学版), 2019, 49(2): 539-547.
[14] 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525.
[15] 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 孟元林,高建军,刘德来,牛嘉玉,孙洪斌,周玥,肖丽华,王粤川. 辽河坳陷鸳鸯沟地区成岩相分析与异常高孔带预测[J]. J4, 2006, 36(02): 227 -0233 .
[2] 曾昭发,吴燕冈,郝立波,王者江,黄 航. 基于泊松定理的重磁异常分析方法及应用[J]. J4, 2006, 36(02): 279 -0283 .
[3] 常秋玲,卢欣祥,刘东华,李明立. 东秦岭五朵山花岗岩体及金矿关系探讨[J]. J4, 2006, 36(03): 319 -325 .
[4] 马艳梅,崔启良,周强,黄伟军,刘冶,彭刚,邹广田. 橄榄石原位高温拉曼光谱研究[J]. J4, 2006, 36(03): 342 -345 .
[5] 程立人,张予杰,张以春. 西藏申扎地区奥陶纪鹦鹉螺化石[J]. J4, 2005, 35(03): 273 -0282 .
[6] 陈 力,佴 磊,王秀范,李 金. 绥中某电力设备站场区地震危险性分析[J]. J4, 2005, 35(05): 641 -645 .
[7] 李斌,孟自芳,李相博,卢红选,郑民. 泌阳凹陷下第三系构造特征与沉积体系[J]. J4, 2005, 35(03): 332 -0339 .
[8] 赵宏光,孙景贵,陈军强,赵俊康,姚凤良,段 展. 延边小西南岔富金斑岩铜矿床的含矿流体起源与演化——H,O,C,S,Pb同位素示踪[J]. J4, 2005, 35(05): 601 -606 .
[9] 郝琦,刘震,查明,李春霞. 辽河茨榆坨潜山太古界裂缝型储层特征及其控制因素[J]. J4, 2006, 36(03): 384 -390 .
[10] 曾道明,纪宏金,陈 满,胡大千,朱永正. 胶东山城金矿地质与地球化学变量的关系[J]. J4, 2006, 36(04): 511 -515 .