吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1224-1230.doi: 10.13278/j.cnki.jjuese.20200086
赵勇胜1,2, 李彧1,2
Zhao Yongsheng1,2, Li Yu1,2
摘要: 为了解决微米铁的重力沉降问题,提高微米铁修复地下水Cr(Ⅵ)污染的原位修复效果,本文利用黄原胶对微米铁进行改性,并通过沉降实验探究改性微米铁浆液的稳定性,同时选择Cr(Ⅵ)作为目标污染物,探究黄原胶改性微米铁去除地下水Cr(Ⅵ)污染的降解能力。实验结果显示:当黄原胶的投加质量浓度分别为0.0、1.0、1.5、2.0、2.5、3.0、6.0 g/L时,改性微米铁浆液的悬浮稳定性逐渐得到加强,在5 h沉降实验结束时,对应的相对分光光度值分别为0.05、0.25、0.46、0.57、0.65、0.73和0.87;黄原胶具有抑制微米铁吸附Cr(Ⅵ)的能力,其可促进Cr(Ⅵ)的还原,提高Cr(Ⅵ)的去除率;随着黄原胶投加质量浓度的增加,对应的Cr(Ⅵ)去除率分别为33.4%、41.2%、47.4%、51.1%、53.0%、63.9%和64.1%;6.0 g/L黄原胶改性的微米铁浆液具有最佳的悬浮稳定性,黄原胶的投加提高了微米铁的反应活性,但当黄原胶投加质量浓度超过3.0 g/L时,其对Cr(Ⅵ)的去除率没有显著提高;黄原胶投加质量浓度越大,黄原胶的缓冲作用就越明显。
中图分类号:
[1] Wang T, Zhang L, Li C, et al. Synthesis of Core-Shell Magnetic Fe3O4@poly(m-Phenylenediamine) Particles for Chromium Reduction and Adsorption[J]. Environmental Science & Technology, 2015, 49:5654-5662. [2] Troiano J M, Jordan D S, Hull C J, et al. Interaction of Cr(III) and Cr(Ⅵ) with Hematite Studied by Second Harmonic Generation[J]. The Journal of Physical Chemistry, 2013, 117:5164-6171. [3] Vinod V T, Sashidhar B. Biosorption of Nickel and Total Chromium from Aqueous Solution by Gum Kondagogu (Cochlospermum Gossypium):A Carbohydrate Biopolymer[J]. Journal of Hazardous Materials, 2010, 178:851-860. [4] 洪梅,任璇,杨慧萍. 稳定型与负载型FeS修复Cr(Ⅵ)污染地下水的可行性[J]. 吉林大学学报(地球科学版),2020,50(4):1182-1188. Hong Mei, Ren Xuan, Yang Huiping. Remediation of Cr(Ⅵ) Contaminated Groundwater by Stable and Loaded FeS[J]. Journal of Jilin University (Earth Science Edition),2020,50(4):1182-1188. [5] Crane R A, Scott T B. Nanoscale Zero-Valent Iron:Future Prospects for an Emerging Water Treatment Technology[J]. Journal of Hazardous Materials, 2012, 211/212:112-125. [6] Grieger K D, Fjordboge A, Hartmann N B, et al. Environmental Benefits and Risks of Zero-Valent Iron Nanoparticles (nZVI) for in Situremediation:Risk Mitigation or Trade-Off[J]. Journal of Contaminant Hydrology, 2010, 118(3/4):165-183. [7] Kirschling T L, Gregory K B, Minkley J E G, et al. Impact of Nanoscale Zero Valent Iron on Geochemistry and Microbial Populations in Trichloroethylene Contaminated Aquifer Materials[J]. Environmental Science & Technology, 2010, 44(9):3474-3480. [8] Kirschling T L, Golas P L, Unrine J M, et al. Microbial Bioavailability of Covalently Bound Polymer Coatings on Model Engineered Nanomaterials[J]. Environmental Science & Technology, 2011, 45(12):5253-5259. [9] Phenrat T, Long T C, Lowry G V, et al. Partial Oxidation ("Aging") and Surface Modification Decrease the Toxicity of Nanosized Zerovalent Iron[J]. Environmental Science & Technology, 2009, 43:195-200. [10] Comba S, Sethi R. Stabilization of Highly Concentrated Suspensions of Iron Nanoparticles Using Shear-Thinning Gels of Xanthan Gum[J]. Water Research, 2009, 43(15):3717-3726. [11] Lee C, Kim J Y, Lee W I, et al. Bactericidal Effect of Zerovalent Iron Nanoparticles on Escherichia Coli[J]. Environmental Science & Technology, 2008, 42:4927-4933. [12] Cantrell K J, Kaplan D I, Gilmore T J. Injection of Colloidal Fe0 Particles in Sand with Shear-Thinning Fluids[J]. Journal of Environmental Engineering, 1997, 123:786-791. [13] Comba S, Braun J. An Empirical Model to Predict the Distribution of Iron Micro-Particles Around an Injection Well in a Sandy Aquifer[J]. Journal of Contaminant Hydrology, 2012, 132:1-11. [14] Oostrom M, Wietsma T W, Covert M A, et al. Zero-Valent Iron Emplacement in Permeable Porous Media Using Polymer Additions[J]. Ground Water Monitoring and Remediation, 2007, 27:122-130. [15] Vecchia E D, Luna M, Sethi R. Transport in Porous Media of Highly Concentrated Iron Micro- and Nanoparticles in the Presence of Xanthan Gum[J]. Environmental Science & Technology, 2009, 43(23):8942-8947. [16] Tosco T, Gastone F, Sethi R. Guar Gum Solutions for Improved Delivery of Iron Particles in Porous Media:Part 2:Iron Transport Tests and Modeling in Radial Geometry[J]. Journal of Contaminant Hydrology, 2014, 166:34-51. [17] Xin J, Han J, Zheng X, et al. Mechanism Insights into Enhanced Trichloroethylene Removal Using Xanthan Gum-Modified Microscale Zero-Valent Iron Particles[J]. Journal of Environmental Management, 2015, 150:420-426. [18] Velimirovic M, Chen H, Simons Q, et al. Reactivity Recovery of Guar Gum Coupled mZVI by Means of Enzymatic Breakdown and Rising[J]. Journal of Contaminant Hydrology, 2012, 142/143:1-10. [19] 韩军. 改性微米铁对三氯乙烯的去除效能研究[D]. 青岛:中国海洋大学, 2015. Han Jun.Study on the Removal Efficiency of Modified Micron Iron on Trichloroethylene[D]. Qingdao:Ocean University of China, 2015. [20] Liu C C, Tseng D H, Wang C Y. Effects of Ferrous Irons on the Reductive Dechlorination of Thrichlore Thylene by Zero-Valent Iron[J]. Journal of Hazardous Materials, 2006, 136(3):706-713. |
[1] | 李超峰. 水力联系系数法定量评价含水层之间水力联系[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1801-1810. |
[2] | 刘元晴, 周乐, 李伟, 王新峰, 马雪梅, 吕琳, 尹凯, 孟顺祥. 鲁中山区中生代构造活动对现今岩溶地下水赋存规律的控制作用[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1811-1822. |
[3] | 潘维强, 张黎明, 丛宇. 深厚松散地层泄压槽治理井筒破坏判据及其与地下水水位关系[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1578-1586. |
[4] | 闫佰忠, 孙剑, 王昕洲, 李晓萌, 孙丰博, 付丹平. 基于GIS-FAHP的石家庄市地下水源热泵适宜性分区[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1172-1181. |
[5] | 王哲, 付宇, 朱静思, 曹文庚. 华北典型河道地下水回补效果评价[J]. 吉林大学学报(地球科学版), 2021, 51(3): 843-853. |
[6] | 闫佰忠, 孙丰博, 李晓萌, 王玉清, 范成博, 陈佳琦. 气候变化与人类活动对石家庄市藁城区地下水位埋深的影响分析[J]. 吉林大学学报(地球科学版), 2021, 51(3): 854-863. |
[7] | 骆奕杉, 李兆. 基于统计方法评价沁水盆地南部煤层气开采对地下水环境的影响[J]. 吉林大学学报(地球科学版), 2021, 51(2): 516-525. |
[8] | 朱君, 李婷, 陈超, 谢添, 张艾明. 近海核电厂核素地下水释放通量的模型计算方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 201-211. |
[9] | 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216. |
[10] | 秦传玉, 郭超, 何宇. 胶态微泡沫在非饱和多孔介质中的迁移规律及影响因素[J]. 吉林大学学报(地球科学版), 2019, 49(6): 1732-1740. |
[11] | 董林垚, 任洪玉, 雷俊山, 刘纪根. 地表暖化影响下温度示踪地下水流速方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 773-783. |
[12] | 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796. |
[13] | 虞未江, 贾超, 狄胜同, 李康, 袁涵. 基于综合权重和改进物元可拓评价模型的地下水水质评价[J]. 吉林大学学报(地球科学版), 2019, 49(2): 539-547. |
[14] | 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525. |
[15] | 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830. |
|