吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (1): 201-211.doi: 10.13278/j.cnki.jjuese.20190140

• 地质工程与环境工程 • 上一篇    

近海核电厂核素地下水释放通量的模型计算方法

朱君, 李婷, 陈超, 谢添, 张艾明   

  1. 中国辐射防护研究院核环境模拟与评价技术重点实验室, 太原 030006
  • 收稿日期:2019-07-14 发布日期:2021-02-02
  • 通讯作者: 张艾明(1971-),男,研究员,主要从事放射性核素在水环境中的迁移、转化规律研究,E-mail:13834508698@163.com E-mail:13834508698@163.com
  • 作者简介:朱君(1985-),男,助理研究员,主要从事核素迁移方面的研究,E-mail:405400881@qq.com
  • 基金资助:
    国家国防科技工业局核能开发项目(2016-08)

Model Calculation Method of Radionuclide Groundwater Release Flux of Offshore Nuclear Power Plants

Zhu Jun, Li Ting, Chen Chao, Xie Tian, Zhang Aiming   

  1. Key Laboratory of Nuclear Environmental Simulation and Evaluation Technology, China Institute for Radiation Protection, Taiyuan 030006, China
  • Received:2019-07-14 Published:2021-02-02
  • Supported by:
    Supported by the Technology and Industry for National Defence-Nuclear Energy Development Project(2016-08)

摘要: 为了定量计算陵区近海核电站排水管线泄漏情景下核素通过地下水途径向海洋环境的释放通量,以某近海核电站为例进行研究。首先,应用GOCAD软件建立三维地形地质模型,刻画地层的分布、剥蚀以及倾向等特点;然后,运用地下水数值模拟软件FEFLOW精细刻画丘陵区地下水系统的补给、径流和排泄特征;最后,以不被吸附滞留的核素3H和被吸附滞留的核素90Sr、137Cs为对象,通过实验测定了90Sr、137Cs在不同岩土介质中的分配系数,模拟计算了排水管线连续渗漏60 a后3H、90Sr、137Cs在地下水中的放射性分布及释放。结果表明:3H迁移速度基本与地下水流速一致,地下水中的最大放射性浓度为0.285 0 Bq/L,第20 000天时向收纳水域的释放通量达到最大值,约526 Bq/d;90Sr吸附性能相对较弱,最大迁移距离约80 m,地下水中的最大放射性浓度为0.032 1 Bq/L;137Cs吸附能力较强,相当长的时间内被滞留在管线附近,地下水中最大放射性浓度分别为6.840×10-3 Bq/L,释放通量为0 Bq/d。由弥散度的不确定分析可知,弥散度越大,地下水中3H的最大放射性浓度越小,向海洋环境的释放通量越多。

关键词: 近海核电厂, 丘陵区, 地下水, 释放通量, 核素迁移

Abstract: In order to quantitatively calculate the release flux of radionuclides to marine environment through groundwater under the situation of drainage pipeline leakage in hilly area, an offshore nuclear power station was taken as an example. Firstly, a three-dimensional topographic geological model was established by using GOCAD software to describe the distribution, denudation,and tendency of strata; Secondly, a three-dimensional hydrogeological model was built with FEFLOW to generalize the characteristics of recharge, runoff,and discharge of groundwater system in hilly area; Finally, the distribution coefficients of 90Sr、137Cs in different groundwater rock and soil media were measured experimentally. After that, the concentration distribution of radionuclides in groundwater after continuous leakage of drainage pipes for 60 a was simulated and calculated. The result shows that the migration velocity of 3H is basically the same as that of groundwater. The maximum concentration of 3H in groundwater is 0.285 0 Bq/L, and the maximum release flux to the receiving water reaches about 526 Bq/d on the 20 000th day. The maximum migration of 90Sr is about 80 m, and the maximum radioactive concentration in groundwater is 0.032 1 Bq/L. 137Cs is retained near the pipeline for a long time because of its strong adsorption capacity, its maximum radioactive concentration in groundwater is 6.840×10-3 Bq/L, and the release flux is 0 Bq/d. Based on the analysis of dispersion uncertainty, the greater the dispersion is, the smaller the maximum radioactive concentration of 3H is in groundwater, and the greater the release flux is to marine environment.

Key words: offshore nuclear power plants, hilly area, groundwater, release flux, radionuclide migration

中图分类号: 

  • X52
[1] 杨国丽, 张海平, 杨杰, 等. Visual MODFLOW在山区城市地下水数值模拟中的应用[J]. 河北建筑工程学院学报, 2012, 30(4):34-37. Yang Guoli, Zhang Haiping, Yang Jie, et al. Application of Visual MODFLOW for Assessment of Groundwater Resources in Mountain City[J]. Journal of Hebei Institute of Architecture and Civil Engineering, 2012, 30(4):34-37.
[2] 周志超, 李杰彪, 苏锐, 等. 川北山丘区地下水补给特征与定量研究[J]. 水文, 2015, 35(5):54-60. Zhou Zhichao, Li Jiebiao, Su Rui, et al. Quantitative Research on Groundwater Recharge in Mountain Area of North Sichuan[J]. Journal of China Hydrology, 2015, 35(5):54-60.
[3] 孙继成, 张旭异, 胡雅杰, 等. 基于GIS技术和FEFLOW的秦王川盆地南部地下水数值模拟[J]. 兰州大学学报(自然科学版), 2010, 46(5):31-38. Sun Jicheng, Zhang Xuyi, Hu Yajie, et al. Numerical Simulation of Groundwater System in the South of Qinwangchuan Basin on GIS Technique and FEFLOW[J]. Journal of Lanzhou University(Natural Sciences), 2010, 46(5):31-38.
[4] 汪祯宸, 陈植华, 徐栋, 等. 基于嵌套模型的地下水侧向径流边界刻画方法研究:以湖北碾盘山冲积平原地下水数值模拟为例[J]. 安全与环境工程, 2016, 23(5):20-28. Wang Zhenchen, Chen Zhihua, Xu Dong, et al. Study on Characterization Methods of Groundwater Lateral Flow Boundary Condition Based on Nested Model:A Case Study of Groundwater Numerical Simulation of Nianpanshan Alluvial Plain in Hubei Province[J]. Safety and Environmental Engineering, 2016, 23(5):20-28.
[5] 冯兆洋, 张辉, 董少刚. 垃圾填埋场渗滤液地下迁移的数值模拟及其模型参数的敏感性分析[J]. 长江科学院院报, 2011, 28(12):107-111. Feng Zhaoyang, Zhang Hui, Dong Shaogang. Numerical Simulation of Subsurface Movement of Landfill Leachate and Sensitivity Analysis of Model Parameters[J]. Journal of Yangtze River Scientific Research Institute, 2011, 28(12):107-111.
[6] 周超, 邵景力, 崔亚莉, 等. 基于地下水流数值模型的改进DRASTIC方法[J]. 水文地质工程地质, 2018, 45(1):15-22. Zhou Chao,Shao Jingli, Cui Yali, et al. A Groundwater Model Based DRASTIC for Assessing Aquifer Vulnerability[J]. Hydrogeology & Engineering Geology, 2018, 45(1):15-22.
[7] 徐映雪, 邵景力, 崔亚莉, 等. 银川平原地下水流模拟与地下水资源评价[J]. 水文地质工程地质, 2015, 42(3):7-12. Xu Yingxue, Shao Jingli, Cui Yali, et al. Application of Groundwater Modeling System to Evaluation of Groundwater Resources in the Yinchuan Plain[J]. Hydrogeology & Engineering Geology, 2015, 42(3):7-12.
[8] 张泽鹏, 朱玉晨, 郝奇琛, 等. 呼和浩特盆地地下水流系统变异机制及其资源效应[J]. 水文地质工程地质, 2017, 44(2):63-68. Zhang Zepeng, Zhu Yuchen, Hao Qichen, et al. A Study on Variation Mechanism of Groundwater Flow System in the Hohhot Basin and Its Resources Effect Analysis[J]. Hydrogeology & Engineering Geology, 2017, 44(2):63-68.
[9] 靳萍, 邵景力, 李长青, 等. 基于T-PROGS的地下水三维数值模拟及应用[J]. 水文地质工程地质, 2009, 36(4):21-26. Jin Ping,Shao Jingli, Li Changqing, et al. Application of T-PROGS to a 3-D Numerical Simulation of Groundwater Flow[J]. Hydrogeology & Engineering Geology, 2009, 36(4):21-26.
[10] 付晓刚, 唐仲华, 刘彬涛, 等. 基于模拟优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3):784-796. Fu Xiaogang, Tang Zhonghua, Liu Bintao, et al. Study on Exploitable Groundwater Resources of Yangzhuang Basin in Shandong Province by Using Simulation-Optimization Model[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(3):784-796.
[11] 杜晓丽, 杜风雷, 王志玉, 等. 核电厂流出物收集箱破裂事故后核素在地下水和地表水中的迁移计算[J]. 辐射防护, 2013, 33(4):235-242. Du Xiaoli, Du Fenglei, Wang Zhiyu, et al. Postulated Radioactive Migration Calculation in Groundwater and Surface Water Due to WLS Effluent Holdup Tank Failure in a NPP[J]. Radiation Protection, 2013, 33(4):235-242.
[12] 王志玉, 杜晓丽, 徐向军, 等. 某核电厂液体贮存罐泄漏3H的迁移计算[J]. 辐射防护通讯, 2014, 34(2):35-38. Wang Zhiyu, Du Xiaoli, Xu Xiangjun, et al. Calculation of 3H Leak from Liquid Tank at a NPPs[J]. Radiation Protection Bulletin, 2014, 34(2):35-38.
[13] 吕晓立, 孙继朝, 刘景涛, 等. 基于GMS的兰州"三滩"水源地地下水水质演化及调控对策[J]. 水文地质工程地质, 2014, 41(4):24-31. Lü Xiaoli, Sun Jichao, Liu Jingtao, et al. Evolution and Countermeasures of Water Quality of the Santan Wellfield in Lanzhou Based on GMS[J]. Hydrogeology & Engineering Geology, 2014, 41(4):24-31.
[14] 吴乐, 张有全, 宫辉力, 等. 北京市西山地区地下水数值模拟及预测[J]. 水文地质工程地质, 2016, 43(3):29-36. Wu Le, Zhang Youquan, Gong Huili, et al. Numerical Simulation of Groundwater Flow for Xishan Area in Beijing[J]. Hydrogeology & Engineering Geology, 2016, 43(3):29-36.
[15] 龚继文, 李崇明, 程艳茹, 等. 基于GMS的山区三维地质模型及应用研究[J].长江流域资源与环境, 2016, 25(7):1135-1141. Gong Jiwen, Li Chongming, Cheng Yanru, et al. Three-Dimensional Geological Model and Application Research on the Mountain Area Based on GMS[J]. Resources and Environment in the Yangtze Basin, 2016, 25(7):1135-1141.
[16] 陈根深, 郭绪磊, 刘刚, 等. 宜昌长江南岸岩溶流域典型区三维地质建模[J].安全与环境工程, 2019, 26(2):1-8. Chen Genshen, Guo Xulei, Liu Gang, et al. 3D Geological Modeling in Typical Area of Karst Basin on the South Bank of the Yangtze River in Yichang City[J]. Safety and Environmental Engineering, 2019, 26(2):1-8.
[17] 陈雄, 张岩, 王艺伟, 等. 苏北沿海三市三维地下水流数值模拟[J].吉林大学学报(地球科学版), 2018, 48(5):1434-1450. Chen Xiong, Zhang Yan, Wang Yiwei, et al. Numerical Simulation of Three Dimensional Groundwater Flow in Three Coastal Cities of North Jiangsu[J]. Journal of Jilin University (Earth Science Edition), 2018, 48(5):1434-1450.
[18] Gmünder C, Malaguerra F, Nusch S, et al. Regional Hydrogeological Model of Northern Switzerland[R]. Wettingen:DHI-WASY, 2014.
[19] Gmünder C, Jordan P, Becker J K. Documentation of the Nagra Regional 3D Geological Model 2012[R]. Wettingen:DHI-WASY, 2013.
[20] Luo J, Monninkhoff B, Becker J K. Hydrogeological Model Zürich Nordost and Südranden[R]. Wettingen:DHI-WASY, 2013.
[21] Luo J, Monninkhoff B, Becker J K. Hydrogeological Model Zürich Nordost and Südranden[R]. Wettingen:DHI-WASY, 2014.
[22] Luo J, Monninkhoff B, Becker J K. Hydrogeological Model Jura Ost[R]. Wettingen:DHI-WASY, 2014.
[23] Luo J, Monninkhoff B, Becker J K. Hydrogeological Model Jura Südfuss[R]. Wettingen:DHI-WASY, 2014.
[24] 给水排水管道工程施工及验收规范:GB 50268-2008[S].北京:中国建筑工业出版社,2008. Code for Construction and Acceptance of Water and Sewerage Pipeline Works:GB 50268-2008[S]. Beijing:China Architecture & Building Press, 2008.
[25] 吴雯倩, 靳孟贵. 淮北市地下水流数值模拟及水文地质参数不确定性分析[J]. 水文地质工程地质, 2014, 41(3):21-28. Wu Wenqian, Jin Menggui. Numerical Simulation of Ground Water Flow Near Huaibei and Uncertainty Analysis of the Hydrogeological Parameters[J]. Hydrogeology & Engineering Geology, 2014, 41(3):21-28.
[26] 束龙仓, 许杨, 吴佩鹏. 基于MODFLOW参数不确定性的地下水水流数值模拟方法[J]. 吉林大学学报(地球科学版), 2017, 47(6):1803-1809. Shu Longcang, Xu Yang, Wu Peipeng. Groundwater Flow Numeric Simulation Method Based on Uncertainties of MODFLOW Parameters[J]. Journal of Jilin University (Earth Science Edition), 2017, 47(6):1803-1809.
[1] 闫佰忠, 孙剑, 王昕洲, 韩娜, 刘博. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020, 50(1): 208-216.
[2] 付晓刚, 唐仲华, 刘彬涛, 蔺林林, 卜华, 闫佰忠. 基于模拟-优化模型的山东羊庄盆地地下水可开采量研究[J]. 吉林大学学报(地球科学版), 2019, 49(3): 784-796.
[3] 董林垚, 任洪玉, 雷俊山, 刘纪根. 地表暖化影响下温度示踪地下水流速方法[J]. 吉林大学学报(地球科学版), 2019, 49(3): 773-783.
[4] 骆祖江, 宁迪, 杜菁菁, 陆玮. 吴江盛泽地区建筑荷载和地下水开采对地面沉降的影响[J]. 吉林大学学报(地球科学版), 2019, 49(2): 514-525.
[5] 虞未江, 贾超, 狄胜同, 李康, 袁涵. 基于综合权重和改进物元可拓评价模型的地下水水质评价[J]. 吉林大学学报(地球科学版), 2019, 49(2): 539-547.
[6] 洪梅, 韩旭, 王蔷, 刘璐, 史玉玺. 硫化纳米铁对模拟地下水中Cr(Ⅵ)的去除效果及影响因素[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1821-1830.
[7] 刘娜, 丁吉阳, 于庆民, 张思达, 赵宏君, 吕春欣. 超声强化零价铁活化过硫酸盐降解地下水中二恶烷[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1831-1837.
[8] 张艳, 徐斌, 刘秀花. 陕西省泾惠渠灌区地下水污染与人体健康风险评价[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1451-1464.
[9] 陈雄, 张岩, 王艺伟, 叶淑君, 吴吉春, 于军, 龚绪龙. 苏北沿海三市三维地下水流数值模拟[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1434-1450.
[10] 丁一凡, 郝光, 刘本华, 张子明, 杨鑫鑫, 刘明柱. 某四氯化碳污染场地自然恢复的地球化学特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1465-1472.
[11] 董军, 徐暖, 刘同喆, 管锐, 邓俊巍. 乳化植物油强化土著微生物修复中高浓度Cr(Ⅵ)污染地下水[J]. 吉林大学学报(地球科学版), 2018, 48(1): 234-240.
[12] 黄星, 路莹, 刘肖, 段晓飞, 朱利民. 地下水位抬升对人工回灌中悬浮物堵塞的影响[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1810-1818.
[13] 董维红, 孟莹, 王雨山, 武显仓, 吕颖, 赵辉. 三江平原富锦地区浅层地下水水化学特征及其形成作用[J]. 吉林大学学报(地球科学版), 2017, 47(2): 542-553.
[14] 付延玲, 骆祖江, 廖翔, 张建忙. 高层建筑引发地面沉降模拟预测三维流固全耦合模型[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1781-1789.
[15] 刘海龙, 马小龙, 袁欣, 穆环玲, 冷冰原, 洪梅. 基于多元回归分析的铬污染地下水风险评价方法[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1823-1829.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!