吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (4): 1231-1242.doi: 10.13278/j.cnki.jjuese.20200112
陈毅军, 程浩, 巩恩普, 薛林
Chen Yijun, Cheng Hao, Gong Enpu, Xue Lin
摘要: 地震勘探的有效信号常受到随机噪声的干扰而难以识别,需要进行随机噪声和有效信号的分离。传统Shearlet全局阈值不随方向与尺度变化,在去噪的同时也会损失许多有效信号。Shearlet变换作为一种新的多尺度多方向时频分析方法,具有最优的稀疏表示能力、局部化特征和方向敏感性。本文将含噪地震信号通过Shearlet分解后计算各尺度与方向上Shearlet域系数的L2范数,并对其进行数据重排后发现,随着方向改变L2范数不断减小,进而提出一种基于L2范数的尺度方向自适应阈值计算方法。将其与小波变换、曲波变换、Shearlet全局阈值去噪方法对比,模拟数据与实际地震记录去噪结果表明,本文方法在去除随机噪声的同时,深部弱信号也得到了很好的恢复,地震数据的信噪比比其他3种方法有所提高,在0.929 9 dB条件下提升至11.565 1 dB。
中图分类号:
[1] 刘阳,赵虎,尹成,等. 起伏地表条件下的弹性波叠前逆时偏移[J]. 煤田地质与勘探,2019,47(1):181-186. Liu Yang, Zhao Hu, Yin Cheng, et al. Elastic Wave Prestack Reverse Time Migration on Undulating Surface[J]. Coal Geology & Exploration, 2019, 47(1):181-186. [2] 张军华. 地震资料去噪方法:原理、算法、编程及应用[M]. 青岛:石油大学出版社,2011. Zhang Junhua. Seismic Data Denoising Method:Principle Algorithm Programming and Application[M]. Qingdao:China University of Petroleum Press, 2011. [3] 万光南.f-k滤波在压制面波噪声中的应用[J]. 中州煤炭,2014(2):99-101. Wan Guangnan. Application off-k Filtering in Noise Suppression of Surface Wave[J]. Zhongzhou Coal, 2014(2):99-101. [4] 贾春梅,姜国庆,刘志成,等. 频域稀疏双曲Radon变换去噪方法[J]. 物探与化探,2016,40(3):527-533. Jia Chunmei, Jiang Guoqing, Liu Zhicheng, et al. Denoising Method Based on Sparse Hyperbolic Radon Transform in the Frequency Domain[J]. Geophysical and Geochemical Exploration, 2016, 40(3):527-533. [5] 曹善舒,李月,吴宁. 自适应径向道TFPF压制地震记录随机噪声[J]. 吉林大学学报(信息科学版),2016,34(2):10-17. Cao Shanshu,Li Yue,Wu Ning. Self-Adaptive Radial-Trace TFPF for Seismic Random Noise Attenuation[J]. Journal of Jilin University (Information Science Edition), 2016, 34(2):10-17. [6] 张洁,李月. 平行径向道时频峰值滤波消减地震资料的随机噪声[J]. 吉林大学学报(工学版),2014,44(3):882-887. Zhang Jie, Li Yue. Reduction of Random Noise in Seismic Data by Parallel Radial-Trace Time-Frequency Peek Filtering[J]. Journal of Jilin University (Engineering and Technology Edition), 2014, 44(3):882-887. [7] Li J, Meng K, Yuan L, et al. Adaptive Linear TFPF for Seismic Random Noise Attenuation[J]. Journal of Petroleum Exploration & Production Technology, 2018, 8(4):1-11. [8] Zhuang G, Yue L, Liu Y, et al. Varying-Window-Length TFPF in High-Resolution Radon Domain for Seismic Random Noise Attenuation[J]. IEEE Geoscience & Remote Sensing Letters, 2014, 12(2):404-408. [9] 刘霞,黄阳,黄敬,等. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1):262-269. Liu Xia, Huang Yang, Huang Jing, et al. Wavelet Entropy Threshold Seismic Signal Denoising Based on Empirical Mode Decomposition (EMD)[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(1):262-269. [10] 杨凯,刘伟. 基于改进EMD的地震信号去噪[J]. 西南石油大学学报,2012,34(4):75-82. Yang Kai, Liu Wei. Random Noise Attenuation of Seismic Signal Based on Improved EMD[J]. Journal of Southwest Petroleum University, 2012, 34(4):75-82. [11] 孙哲,王建锋,王静,等. 基于时空变中值滤波的随机噪声压制方法[J]. 石油地球物理勘探,2016,51(6):1094-1102. Sun Zhe, Wang Jianfeng, Wang Jing, et al. Random Noise Elimination Based on the Time-Spacevariant Median Filtering[J]. Oil Geophysical Prospecting, 2016, 51(6):1094-1102. [12] 王伟,高静怀,陈文超,等. 基于结构自适应中值滤波器的随机噪声衰减方法[J]. 地球物理学报,2012, 55(5):1732-1741. Wang Wei, Gao Jinghuai, Chen Wenchao, et al. Random Seismic Noise Suppression via Structure-Adaptive Median Filter[J]. Chinese Journal of Geophysics, 2012, 55(5):1732-1741. [13] Kourouniotis F P, Kubichek R F, Boyd N G, et al. Application of the Wavelet Transform in Seismic Data Processing for the Development of New Noise Reduction Techniques[J]. Proc.SPIE-Wavelet Applications in Signal and Image Processing IV, 1996, 2825:620-631. [14] Donoho D L. Wedgelets:Nearly Minimax Estimation of Edges[J]. Annals of Statistics, 1999, 27(3):859-897. [15] Pennec E L, Mallat S. Sparse Geometric Image Representations with Bandelets[J]. IEEE Transactions on Image Processing, 2005, 14(4):423-438. [16] Do M N, Vetterli M. The Finite Ridgelet Transform for Image Representation[J]. IEEE Transactions on Image Processing, 2003, 12(1):16-28. [17] Starck J L, Candes E J, Donoho D L. The Curvelet Transform for Image Denoising[J]. IEEE Transactions on Image Processing, 2002, 11(6):670-684. [18] 张华,陈小宏,李红星,等. 曲波变换三维地震数据去噪技术[J]. 石油地球物理勘探,2017,52(2):226-232. Zhang Hua, Chen Xiaohong, Li Hongxing, et al. 3D Seismic Data De-Noising Approach Based on Curve-Let Transform[J]. Oil Geophysical Prospecting, 2017, 52(2):226-232. [19] Do M N, Vetterli M. The Contourlet Transform:An Efficient Directional Multiresolution Image Representation[J]. IEEE Transactions on Image Processing:A Publication of the IEEE Signal Processing Society, 2005, 14(12):2091-2106. [20] 王建花,王守东,刘燕峰. 基于Contourlet系数相关性的地震噪声压制方法[J]. 中国海上油气,2016,28(1):39-44. Wang Jianhua, Wang Shoudong, Liu Yanfeng. Seismic Noise Suppression Method Based on Correlation of Contourlet Coefficients[J]. China Offshore Oil and Gas, 2016, 28(1):39-44. [21] Easley G, Labate D, Lim W Q. Sparse Directional Image Representations Using the Discrete Shearlet Transform[J]. Applied & Computational Harmonic Analysis, 2008, 25(1):25-46. [22] Guo K, Labate D, Lim W Q, et al. Wavelets with Composite Dilations and Their MRA Properties[J]. Applied & Computational Harmonic Analysis, 2006, 20(2):202-236. [23] Labate D, Guo K. Optimally Sparse Multidimensional Representation Using Shearlets[J]. SIAM Journal on Mathematical Analysis, 2007, 39(1):298-318. [24] Kong D, Peng Z. Seismic Random Noise Attenuation Using Shearlet and Total Generalized Variation[J]. Journal of Geophysics & Engineering, 2015, 12(6):1024-1035. [25] Hosseini S A, Javaherian A, Hassani H, et al. Adaptive Attenuation of Aliased Ground Roll Using the Shearlet Transform[J]. Journal of Applied Geophysics, 2015, 112:190-205. [26] 董新桐,马海涛,李月. 丘陵地带地震资料随机噪声压制新技术:高阶加权阈值函数的Shearlet变换[J]. 地球物理学报,2019,62(10):4039-4046. Dong Xintong, Ma Haitao, Li Yue. The New Technology for Suppression of Hilly Land Seismic Random Noise:Shearlet Transform and the High Order Weighted Threshold Function[J]. Chinese Journal of Geophysics, 2019, 62(10):4039-4046. [27] 李民,周亚同,李梦瑶,等. Shearlet域基于非局部均值的地震信号去噪[J/OL]. 重庆大学学报.[2016-12-30]. http://kns.cnki.net/kcms/detail/50.1044.n.20191227.1804.011.html. Li Min, Zhou Yatong, Li Mengyao, et al. Denoising of Seismic Signals Based on Non-Local Mean in Shearlet Domain[J/OL]. Journal of Chongqing University.[2016-12-30].http://kns.cnki.net/kcms/detail/50.1044.n.20191227.1804.011.html. [28] 李娟,计硕,李月,等. 基于Shearlet变换和峰度特性的井中微地震初至波拾取[J]. 吉林大学学报(工学版),2019,49(1):290-295. Li Juan, Ji Shuo, Li Yue, et al. First Arrival Pickup of Downhole Microseismic Signal Based on Shearlet Transform and Kurtosis Characteristic[J]. Journal of Jilin University (Engineering and Technology Edition), 2019, 49(1):290-295. [29] 刘成明,王德利,胡斌,等. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版),2016,46(6):1855-1864. Liu Chengming, Wang Deli, Hu Bin, et al. Seismic Data Interpolation Based on Sparse Constraint in Shearlet Domain[J]. Journal of Jilin University (Earth Science Edition), 2016, 46(6):1855-1864. [30] 郑升,李月,董新桐. Shearlet域深度残差CNN用于沙漠地震信号去噪[J]. 吉林大学学报(信息科学版), 2019,37(1):1-7. Zheng Sheng, Li Yue, Dong Xintong. Shearlet Domain Deep Residual CNN for Removing Noise from Desert Seismic Signals[J]. Journal of Jilin University (Information Science Edition), 2019, 37(1):1-7. |
[1] | 刘一, 刘财, 刘洋, 勾福岩, 李炳秀. 复杂地震波场的自适应流预测插值方法[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1260-1267. |
[2] | 王宪楠, 刘四新, 程浩. Shearlet变换在GPR数据随机噪声压制中的应用[J]. 吉林大学学报(地球科学版), 2017, 47(6): 1855-1864. |
[3] | 刘海燕, 刘财, 王典, 刘洋. 基于Facet模型梯度算子一致性的地震数据不连续性识别方法[J]. 吉林大学学报(地球科学版), 2017, 47(4): 1286-1294. |
[4] | 习建军, 曾昭发, 黄玲, 崔丹丹, 王者江. 阵列式探地雷达信号极化场特征[J]. 吉林大学学报(地球科学版), 2017, 47(2): 633-644. |
[5] | 刘成明, 王德利, 胡斌, 王通. Shearlet域稀疏约束地震数据重建[J]. 吉林大学学报(地球科学版), 2016, 46(6): 1855-1864. |
[6] | 刘霞, 黄阳, 黄敬, 段志伟. 基于经验模态分解(EMD)的小波熵阈值地震信号去噪[J]. 吉林大学学报(地球科学版), 2016, 46(1): 262-269. |
[7] | 贾海青, 姜弢, 徐学纯, 葛利华, 林君, 杨志超. 可控震源记录中的脉冲噪声分析[J]. 吉林大学学报(地球科学版), 2015, 45(1): 302-311. |
[8] | 刘财, 崔芳姿, 刘洋, 王典, 刘殿秘, 张鹏. 基于低信噪比条件下新型Seislet变换的阈值去噪方法[J]. 吉林大学学报(地球科学版), 2015, 45(1): 293-301. |
[9] | 徐明华,李瑞,路交通,蒙杉,龚幸林. 基于压缩感知理论的缺失地震数据重构方法[J]. 吉林大学学报(地球科学版), 2013, 43(1): 282-290. |
[10] | 董烈乾, 李振春, 刘磊, 李志娜, 桑运云. 基于经验模态分解的曲波阈值去噪方法[J]. J4, 2012, 42(3): 838-844. |
[11] | 李海山, 吴国忱, 印兴耀. 形态分量分析在去除地震资料随机噪声中的应用[J]. J4, 2012, 42(2): 554-561. |
[12] | 刘财, 冯智慧, 谢金娥, 冯晅, 王典. 基于四阶累积量的同相轴自动拾取方法[J]. J4, 2010, 40(5): 1188-1193. |
|