吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1490-1505.doi: 10.13278/j.cnki.jjuese.20200208

• 绿色岩土工程 • 上一篇    下一篇

静压桩承载力时间效应的研究进展

王永洪1,2, 黄永峰1, 张明义1,2, 李长河3, 苏雷1, 仉文岗4, 林沛元5, 崔纪飞6, 焉振7   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266033;
    2. 山东省高等学校蓝色经济区工程建设与安全协同创新中心, 山东 青岛 266033;
    3. 青岛理工大学机械与汽车工程学院, 山东 青岛 266520;
    4. 重庆大学土木工程学院, 重庆 400045;
    5. 中山大学土木工程学院, 广州 510275;
    6. 上海理工大学环境与建筑学院, 上海 200093;
    7. 交通运输部天津水运工程科学研究所, 天津 300000
  • 收稿日期:2020-07-17 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 张明义(1958-),男,教授,博士生导师,主要从事土力学与地基基础领域的研究,E-mail:zmy58@163.com E-mail:zmy58@163.com
  • 作者简介:王永洪(1984-),男,讲师,博士,主要从事地基基础与岩土工程测试方面的研究,E-mail:hong7986@163.com
  • 基金资助:
    国家自然科学基金项目(41772318,51778312,51809146)

Research Progress on Time Effect of Static Pressure Pile Bearing Capacity

Wang Yonghong1,2, Huang Yongfeng1, Zhang Mingyi1,2, Li Changhe3, Su Lei1, Zhang Wengang4, Lin Peiyuan5, Cui Jifei6, Yan Zhen7   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. Cooperative Innovation Center of Engineering Constructionand Safety in Shandong Blue Economic Zone, Qingdao 266033, Shandong, China;
    3. School of Mechanical and Automotive Engineering, Qingdao University of Technology, Qingdao 266520, Shandong, China;
    4. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
    5. School of Civil Engineering, Sun Yat-Sen University, Guangzhou 510275, China;
    6. School of Environment and Architecture, University of Shanghai for Science and Technology, Shanghai 200093, China;
    7. Tianjin Institute of Water Transport Engineering Science, Ministry of Transport, Tianjin 300000, China
  • Received:2020-07-17 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (41772318, 51778312, 51809146)

摘要: 由于静压桩沉桩后桩周土重塑,静压桩承载力表现出随着休止期的延长而增长的特性。本文从静压桩沉桩后桩周土体内孔隙水消散固结的角度出发,对静压桩承载力时间效应的理论和试验分别进行归纳,结合孔隙水消散路径及固结模型,对桩周土体初始超静孔隙水压力大小及其分布特征进行总结,分析承载力各种测试方法的优缺点,对静压桩承载力的时效性进行深化研究,并探讨了不同地质条件、不同桩的类型对休止期内静压桩承载力的影响,进一步对基于实测数据得出的经验公式进行总结。讨论了基于不同本构关系模型的应力场及位移场解答和沉桩后孔隙水压力消散解答,在此基础上总结了桩基极限承载力理论公式;探讨了黏性土、砂土条件下,考虑超固结比、不排水抗剪强度和塑性指数比对桩基极限承载力系数A的影响,在此基础上归纳了桩基极限承载力经验公式。建议在经验公式基础上设置多重参数,以提升经验公式的精确度,并完善对不同桩、土类型的参数解答;利用BP神经网络,导入静压桩承载力相关参数,以得到针对不同地质条件、桩型、休止期的承载力最优解。

关键词: 静压桩, 承载力, 时间效应, 经验公式

Abstract: Due to the remodeling of the soil around the pile after the settlement of the static pressure pile, the bearing capacity of the static pressure pile shows the characteristic of increasing with the growth of the resting period. From the perspective of the dissipation and consolidation of pore water in the soil around the pile after the pile sinking, in this paper, the authors summarize the theoretical and experimental studies on the time effect of the bearing capacity of the static pressure pile. For the existing shortcomings, it is recommended to fully consider the initial excess pore water pressure of the soil around the pile and its distribution characteristics, to conduct in-depth research on the time effect of the bearing capacity of the static pressure pile combined with the pore water dissipation path and consolidation model, and to explore through experiments the influence of different geology and pile types on the bearing capacity of static pressure piles during the rest period so as to further improve the empirical formula based on the measured data. This research helps to predict the safety of buildings, thereby optimizing the design of the static pressure pile, and bringing good economic benefits to the construction party and the designer. The stress field and displacement field solutions based on different constitutive relationship models and the solution of pore water pressure dissipation after pile sinking are summarized, the theoretical formula of ultimate bearing capacity of pile foundation through effective stress principle is established, and under the condition of cohesive soil and sand with considering the influence of over-consolidation ratio and undrained shear strength and plasticity index ratio on coefficient A, the empirical formula for ultimate bearing capacity of pile foundation is improved. It is recommended that multiple parameters should be set on the basis of the empirical formula to improve the accuracy of the empirical formula and the parameter solutions for different piles and soil types, and by using the BP neural network and importing the relevant parameters of the static pressure pile bearing capacity to obtain the optimal solution for the bearing capacity of different geological conditions, pile types, and resting periods.

Key words: static pressure pile, bearing capacity, time-effect, empirical equation

中图分类号: 

  • TU473.1
[1] Fattah M Y, Wissam H S, Soudani A. Bearing Capacity of Open-Ended Pipe Piles with Restricted Soil Plug[J]. Ships and Offshore Structures, 2016, 11(5):501-516.
[2] 董光辉, 张明义, 郑丽.静压桩极限承载力的时效分析[J]. 岩土工程技术, 2005, 19(4):170-172. Dong Guanghui, Zhang Mingyi, Zheng Li. Analysis on Time Limitation of the Ultimate Bearing Capacity of Jacked Pile[J]. Geotechnical Engineering Technique, 2005, 19(4):170-172.
[3] Murthy D S, Robinson R G, Rajagopal K. Formation Soil Plug in Open-Ended Pipe Piles in Sandy Soils[J]. International Journal of Geotechnical Engineering, 2018, 15:1-11.
[4] 白晓宇, 牟洋洋, 张明义, 等. 风化岩基大直径灌注桩后注浆承载性能试验研究[J]. 土木与环境工程学报, 2019, 41(2):1-11. Bai Xiaoyu, Mou Yangyang, Zhang Mingyi, et al. Experimental Study on Bearing Behavior of Large-Diameter Drilling Piles with Post Grouting in Decomposed Rock Foundation[J]. Journal of Civil and Environmental Engineering, 2019, 41(2):1-11.
[5] Chow F C, Jardine R J, Nauroy J F. et al. Time-Related Increase in Shaft Capacities of Driven Piles in Sand[J]. Geotechnique, 1977, 47(2):353-361.
[6] Brucy F, Meunier J, Nauroy J F. Behavior of Pile Plug in Sandy Soils During and After Driving[C]//Proceedings of 23rd Offshore Technology Conference. Houston:American Institute of Mining, Metallurgical and Petroleum Engineers, 1991:145-154.
[7] 龚晓南, 李向红. 静力压桩挤土效应中的若干力学问题[J]. 工程力学, 2000, 17(4):7-12. Gong Xiaonan, Li Xianghong. Some Mechanical Problems in the Effect of Statically Driven Piles[J]. Engineering Mechanics, 2000, 17(4):7-12.
[8] Doherty P, Gavin K. The Shaft Capacity of Displacement Piles in Clay:A State of the Art Review[J]. Geotech Geol Eng, 2011, 29:389-410.
[9] 杨冰, 许天福, 李凤昱, 等. 水-岩作用对储层渗透性影响的数值模拟研究:以鄂尔多斯盆地东北部上古生界砂岩储层为例[J]. 吉林大学学报(地球科学版), 2019, 49(2):526-538. Yang Bing, Xu Tianfu, Li Fengyu, et al. Numerical Simulation on Impact of Water-Rock Interaction on Reservoir Permeability:A Case Study of Upper Paleozoic Sandstone Reservoirs in Northeastern Ordos Basin[J]. Journal of Jilin University(Earth Science Edition), 2019, 49(2):526-538.
[10] Carter J P, Randolph M F, Wroth C P. Stress and Pore Pressure Changes in Clay During and After the Expansion of a Cylindrical Cavity[J]. Numerical and Analytical Methods in Geomechanics, 1979, 3(4):305-322.
[11] Whittle A J, Sutabutr T. Prediction of Pile Setup in Clay[J]. Transportation Research Record, 1999, 1663(1):33-40.
[12] 张明义, 刘雪颖, 王永洪, 等. 粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6):1804-1813. Zhang Mingyi, Liu Xueying, Wang Yonghong, et al. Field Test on Influencing Mechanism of Silty Soil and Silty Clay on Tip Resistance of Static Pressure Pile[J]. Journal of Jilin University(Earth Science Edition), 2020, 50(6):1804-1813.
[13] Jardine R J, Standing J R, Chow F C. Some Observations of the Effects of Time on the Capacity of Piles Driven in Sand[J]. Geotechnique, 2006, 56(4):227-244.
[14] 张明义, 刘俊伟, 于秀霞. 饱和软黏土地基静压管桩承载力时间效应试验研究[J]. 岩土力学, 2009, 30(10):3005-3009. Zhang Mingyi, Liu Junwei, Yu Xiuxia. Field Test Study of Time Effect on Ultimate Bearing Capacity of Jacked Pipe Pile in Soft Clay[J]. Rock and Soil Mechanics, 2009, 30(10):3005-3009.
[15] Soderberg L G. Consolidation Theory Applied to Foundation Pile Time Effects[J]. Geotechnique, 1962, 12(3):217-225.
[16] Randolph M F, Wroth C P. An Analytical Solution for the Consolidation Around a Driven Pile[J]. International Journal for Numerical & Analytical Methods in Geomechanics, 2010, 3(3):217-229.
[17] Bishop R F, Hill R, Mott N F. The Theory of Indentation and Hardness Tests[J]. Proceedings of the Physical Society, 2002, 57(3):147-159.
[18] 蒋明镜, 沈珠江. 考虑剪胀的线性软化柱形孔扩张问题[J]. 岩石力学与工程学报, 1997, 16(6):550-557. Jiang Mingjing, Shen Zhujiang. Linear Softening Cylindrical Hole Expansion Problem Considering Dilatancy[J]. Chinese Journal of Rock Mechanics and Engineering, 1997, 16(6):550-557.
[19] 王晓鸿, 王家来, 梁发云. 应变软化岩土材料内扩孔问题解析解[J]. 工程力学, 1999, 16(5):71-76. Wang Xiaohong, Wang Jialai, Liang Fayun. Analytical Solution to Expansion of Cavity in Strain-Softening Materials[J]. Engineering Mechanics, 1999, 16(5):71-76.
[20] 罗战友, 夏建中, 龚晓南. 不同拉压模量及软化特性材料的球形孔扩张问题的统一解[J]. 工程力学, 2006, 23(4):22-27. Luo Zhanyou, Xia Jianzhong, Gong Xiaonan. Unified Solution for the Expansion of Spherical Cavity in Strain-Softening Materials with Different Elastic Moduli in Tensile and Compression[J]. Engineering Mechanics, 2006, 23(4):22-27.
[21] 邹金锋, 吴亚中, 李亮, 等. 考虑大变形和排水条件时柱孔扩张问题统一解析[J]. 工程力学, 2010, 27(6):1-7. Zhou Jinfeng, Wu Yazhong, Li Liang, et al. Unified Elastic Plastic Solution for Cylindrical Cavity Expansion Considering Large Strain and Drainage Condition[J]. Engineering Mechanics, 2010, 27(6):1-7.
[22] 刘时鹏, 施建勇, 雷国辉. 基于SMP准则柱孔扩张问题相似解[J]. 岩土力学, 2012, 33(5):1375-1380. Liu Shipeng, Shi Jianyong, Lei Guohui. Similarity Solutions of Cylindrical Cavity Expansion Based on SMP Criterion[J]. Rock and Soil Mechanics, 2012, 33(5):1375-1380.
[23] Vesic A C. Expansion of Cavity in Infinite Soil Mass[J]. Journal of Soil Mechanics and Foundation Division, 1972, 98(3):265-289.
[24] 徐永福, 傅德明. 结构性软土打桩引起的超孔隙水压力[J]. 岩土力学, 2000, 21(1):53-55. Xu Yongfu, Fu Deming. Excess Pore Pressure Induced in Piling in Saturated Structural Soft Soils[J]. Rock and Soil Mechanics, 2000, 21(1):53-55.
[25] 王伟, 宰金珉, 王旭东. 沉桩引起的三维超静孔隙水压力计算及其应用[J]. 岩土力学, 2004, 25(5):774-778. Wang Wei, Zai Jinming, Wang Xudong. 3D Calculation of Excess Pore Water Pressure Due to Driving Pile and Its Application[J]. Rock and Soil Mechanics, 2004, 25(5):774-778.
[26] 胡伟, 黄义, 刘增荣, 等. 饱和黏土中挤土桩球形孔扩张的弹塑性分析[J]. 工程力学, 2008, 25(8):180-187. Hu Wei, Huang Yi, Liu Zengrong, et al. Elastic-Plastic Solution of Sphere Cavity Expansionof Soil Compaction Pilein Saturated Clay[J]. Engineering Mechanics, 2008, 25(8):180-187.
[27] 高子坤, 施建勇. 饱和黏土中沉桩挤土形成超静孔压分布理论解答研究[J]. 岩土工程学报, 2013, 35(6):1109-1114. Gao Zikun, Shi Jianyong. Theoretical Solutions of Distribution of Excess Pore Pressure Due to Pile Jacking in Saturated Clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6):1109-1114.
[28] 张鹏远, 白冰, 蒋思晨, 等. 饱和黏土中球(柱)孔瞬时扩张及超孔隙水压力研究[J]. 应用基础与工程科学学报, 2016, 24(1):115-125. Zhang Pengyuan, Bai Bing, Jiang Sichen, et al. The Study of Expansion of Spherical Cavity and Excess Pore Water Pressure About the Spherical (Cylindrical) Cavity in Saturated Clay[J]. Journal of Basic Science and Engineering, 2016, 24(1):115-125.
[29] 梅毕祥, 杨敏, 贾尚华. 基于摩尔库伦准则考虑渗流影响的孔扩张理论[J]. 同济大学学报(自然科学版), 2017, 45(3):309-316. Mei Bixiang, Yang Min, Jia Shanghua. Mohr-Coulomb Criterion-Based Theoretical Solutions of Spherical Cavity Expansion Considering Seepage[J]. Journal of Tongji University (Natural Science), 2017, 45(3):309-316.
[30] Baligh M M. Undrained Deep Penetration:I:Pore Pressures[J]. Éotechnique, 1986, 36(4):487-501.
[31] Roy M, Blanchet R. Behavior of a Sensitive Clay During Pile Driving[J]. Canadian Geotechnical Journal, 1981, 18:67-85.
[32] Guo W D. Visco-Elastic Consolidation Subsequent to Pile Installation[J]. Computers and Geotechnics, 2000, 26(2):113-144.
[33] 刘时鹏, 施建勇, 张金水, 等. 基于桩周土体固结的静压桩承载力时效性研究[J]. 中南大学学报(自然科学版), 2016, 47(10):3454-3460. Liu Shipeng, Shi Jianyong, Zhang Jinshui, et al. Study on Time Effect of Bearing Capacity of Jacked Pile Based on Soil Consolidation[J]. Journal of Central South University (Science and Technology Edition), 2016, 47(10):3454-3460.
[34] 李镜培, 方睿, 李林. 考虑土体三维强度特性的静压桩周超孔压解析及演变[J]. 岩石力学与工程学报, 2016, 35(4):847-855. Li Jingpei, Fang Rui, Li Lin. Variation of Excess Pore Pressure Around Jacked Pries Considering the Three-Dimensional Strength of Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4):847-855.
[35] 高子坤, 施建勇. 饱和黏土中单桩桩周土空间轴对称固结解[J]. 岩土力学, 2008, 29(4):979-982. Gao Zikun, Shi Jianyong. Consolidation Solution of Soil Around Single-Pile After Pile Sinking[J]. Rock and Soil Mechanics, 2008, 29(4):979-982.
[36] Randolph M F, Wroth C P. An Analytical Solution for the Consolidation Around a Driven Pile[J]. International Journal Numberic and Analytical Methods in Geomechanics, 1978, 3:217-229.
[37] 章根德. 钢管桩固结过程的分析[J]. 力学与实践, 1987, 9(4):18-22. Zhang Gende. Analysis of the Consolidation Process of Steel Pipe Piles[J]. Mechanics and Practice, 1987, 9(4):18-22.
[38] Guo W D. Visco-Elastic Consolidation Subsequent to Pile Installation[J]. Computers and Geotechnics, 2000, 26(2):113-144.
[39] 刘俊伟, 张明义, 谢建, 等. 静压桩承载力时效性的模拟计算[J]. 工业建筑, 2010, 40(1):64-67. Liu Junwei, Zhang Mingyi, Xie Jian, et al. Computational Simulation of Time-Effect on Bearing Capacity of Jacked Pile[J]. Industrial Construction, 2010, 40(1):64-67.
[40] 赵明华, 占鑫杰, 邹新军, 等. 饱和软黏土中沉桩后桩周土体固结分析[J]. 工程力学, 2012, 29(10):91-97. Zhao Minghua, Zhan Xinjie, Zou Xinjun, et al. Consolidation Analysis Around a Driven Pile in Saturated Clay[J]. Engineering Mechanics, 2012, 29(10):91-97.
[41] 李镜培, 方睿, 李林, 等. 基于变固结系数的静压桩周土体力学特性研究[J]. 岩土力学, 2016, 37(3):679-686. Li Jingpei, Fang Rui, Li Lin, et al. Study of Mechanical Properties of Soil Around Jacked Piles Considering Variable Consolidation Coefficient[J]. Rock and Soil Mechanics, 2016, 37(3):679-686.
[42] 李镜培, 李林, 孙德安, 等. 基于总应力法的静压桩极限承载力时效性研究[J]. 岩土工程学报, 2016, 38(12):2154-2163. Li Jingpei, Li Lin, Sun De'an, et al. Study on the Time-Dependent Bearing Capacity of Jacked Pile Based on the Total Tress Method[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(12):2154-2163.
[43] Burland J P. Shaft Friction of Piles in Clay:A Simple Fundamental Approach[J]. Ground Engineering, 1973, 6:30-42.
[44] 李镜培, 李林, 孙德安, 等. 基于CPTU测试的K0固结黏土中静压桩时变承载力研究[J]. 岩土工程学报, 2017, 39(2):193-200. Li Jingpei, Li Lin, Sun De'an, et al. Time-Dependent Bearing Capacity of Jacked Piles in K0 Consolidated Clay Based on CPTU Tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2):193-200.
[45] 陈怡, 党发宁, 赵静. 基于超静孔压消散的预制静压桩桩侧极限摩阻力计算[J]. 西安理工大学学报, 2017, 33(1):24-28. Chen Yi, Dang Faning, Zhao Jing. Ultimate Shaft Resistance of Jacked Piles Based on Excess Pore Pressure Dissipation[J]. Journal of Xi'an University of Technology, 2017, 33(1):24-28.
[46] 李林, 李镜培, 赵高文, 等. 基于有效应力法的静压桩时变承载力研究[J]. 岩土力学, 2018, 39(12):4547-4553. Li Lin, Li Jingpei, Zhao Gaowen, et al. Time-Dependent Bearing Capacity of a Jacked Pile Based on the Effective Stress Method[J]. Rock and Soil Mechanics, 2018, 39(12):4547-4553.
[47] Mabsout M E, Tasoulas J L. A Finite Element Model for the Simulation of Pile Driving[J]. International Journal for Numerical Methods in Engineering, 1994, 37:257-278.
[48] 张明义, 邓安福, 干腾君. 静力压桩数值模拟的位移贯入法[J]. 岩土力学, 2003, 24(1):113-117. Zhang Mingyi, Deng Anfu, Gan Tengjun. Displacement Penetration Method Used for Numerical Simulation to Jacked Pile[J]. Rock and Soil Mechanics, 2003, 24(1):113-117.
[49] 鹿群, 龚晓南, 崔武文, 等.饱和成层地基中静压单桩挤土效应的有限元模拟[J]. 岩土力学, 2008, 29(11):3017-3020. Lu Qun, Gong Xiaonan, Cui Wuwen, et al. Squeezing Effects of Jacked Pile in Layered Soil[J]. Rock and Soil Mechanics, 2008, 29(11):3017-3020.
[50] 罗战友, 龚晓南, 王建良, 等. 静压桩挤土效应数值模拟及影响因素分析[J]. 浙江大学学报(工学版), 2005, 39(7):992-996. Luo Zhanyou, Gong Xiaonan, Wang Jianliang, et al. Numerical Simulation and Factor Analysis of Jacked Pile Compacting Effects[J]. Journal of Zhejiang University(Engineering Science), 2005, 39(7):992-996.
[51] 罗战友, 王伟堂, 刘薇. 桩-土界面摩擦对静压桩挤土效应的影响分析[J]. 岩石力学与工程学报, 2005, 24(18):3299-3304. Luo Zhanyou, Wang Weitang, Liu Wei. Influence Analysis of Friction Between Pile and Soil on Compacting Effects of Jacked Pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(18):3299-3304.
[52] 周健, 邓益兵, 叶建忠, 等. 砂土中静压桩沉桩过程试验研究与颗粒流模拟[J]. 岩土工程学报, 2009, 31(4):501-507. Zhou Jian, Deng Yibing, Ye Jianzhong, et al. Experimental and Numerical Analysis of Jacked Piles During Installation in Sand[J]. Chinese Journal of Geotechnical Engineering, 2009, 31(4):501-507.
[53] 毕庆涛, 肖昭然, 丁树云, 等.静压桩压入过程的数值模拟[J]. 岩土工程学报, 2011, 33(增刊2):74-77. Bi Qingtao, Xiao Zhaoran, Ding Shuyun, et al. Numerical Modelling of Penetrating of Jacked Piles[J]. Chinese Journal of Geotechnical Engineering, 2011, 33(Sup. 2):74-77.
[54] Silva M F, White D J, Bolton M D. An Analytical Study of the Effect of Penetration Rate on Piezocone Tests in Clay[J]. International Journal for Numerical and Analytical Methods in Geomechanics, 2006, 30(6):501-527.
[55] Murad A, Firouz R, Ahmad S. Evaluating Pile Installation and Subsequent Thixotropic and Consolidation Effects on Setup by Numerical Simulation for Full-Scale Pile Load Tests[J]. Canadian Ceotechnical Journal, 2015, 52(11):1734-1746.
[56] Hamann T, Qiu G, Grabe J. Application of a Coupled Eulerian-Lagrangian Approach on Pile Installation Problems Under Partially Drained Conditions[J]. Comput Geotech, 2015, 63:279-290.
[57] Wang D, Bienen B, Nazem M, et al. Large Deformation Finite Element Analyses in Geotechnical Engineering[J]. Comput Geotech, 2015, 65:104-114.
[58] 彭劼, 施建勇, 娄亮, 等. 考虑时效作用的桩基承载力计算方法研究[J]. 岩土力学, 2003, 24(1):118-122. Peng Jie, Shi Jianyong, Lou Liang, et al. Research on Calculating Pile's Bearing Capacity Considering Time-Effect Combining[J]. Rock and Soil Mechanics, 2003, 24(1):118-122.
[59] Basu P, Prezzi M, Salgado R, et al. Shaft Resistance and Setup Factors for Piles Jacked in Clay[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2014, 140(3):1-16.
[60] 诸伟琦, 陈文才. 单桩极限承载力的神经网络预测[J]. 上海大学学报(自然科学版), 2004, 10(6):639-642. Zhu Weiqi, Chen Wencai. Predicting Bearing Capacity of Single Pile Using Neural Network[J]. Journal of Shanghai University(Natural Science), 2004, 10(6):639-642.
[61] 王伟, 卢廷浩, 宰金珉. 预制桩承载力时效的人工神经网络预测[J]. 水运工程, 2004, 37(11):9-12. Wang Wei, Lu Tinghao, Zai Jinmin. Prediction of Time-Dependent Bearing Capacity of Driven Piles by Using Artificial Neural Networks[J]. Port and Waterway Engineering, 2004, 37(11):9-12.
[62] 张明义, 时伟, 王崇革, 等. 静压桩极限承载力的时效性[J]. 岩石力学与工程学报, 2002, 21(增刊2):2601-2604. Zhang Mingyi, Shi Wei, Wang Chongge, et al. Time Effect on the Ultimate Bearing Capacity of Static Pressed Pile[J]. Chinese Journal of Rock Mechanics and Engineering, 2002, 21(Sup. 2):2601-2604.
[63] 王戍平. 深厚软土中PHC长桩的时效性试验研究[J]. 岩土工程学报, 2003, 25(2):239-241. Wang Shuping. Experimental Study on Time Effect of PHC Long Pile in Deep Soft Soil[J]. Chinese Journal of Geotechnical Engineering, 2003, 25(2):239-241.
[64] 寇海磊, 张明义, 刘俊伟. 基于光纤传感技术静压桩承载力时效性机理分析[J]. 岩土力学, 2013, 34(4):1082-1088. Kou Hailei, Zhang Mingyi, Liu Junwei. Bearing Capacity Efficiency MechanismAnalysis of Jacked Pile Based on Optical Fiber Sensing Technology[J]. Rock and Soil Mechanics, 2013, 34(4):1082-1088.
[65] 胡永强, 汤连生, 李兆源. 静压桩桩-土界面滑动摩擦机制研究[J]. 岩土力学, 2015, 36(5):1288-1294. Hu Yongqiang, Tang Liansheng, Li Zhaoyuan. Mechanism of Sliding Friction at Pile-Soil Interface of Jacked Pile[J]. Rock and Soil Mechanics, 2015, 36(5):1288-1294.
[66] 胡永强, 汤连生, 黎志中. 端承型静压桩沉桩贯入过程中桩侧阻力变化规律及其时效性试验研究[J]. 中山大学学报(自然科学版), 2015, 54(1):130-135. Hu Yongqiang, Tang Liansheng, Li Zhizhong. Experimental Study on Variation and Time Effect of Shaft Resistance of Jacked Pile Installation[J]. Acta Scientiarum Naturalium Universitatis Sunyatseni, 2015, 54(1):130-135.
[67] 汤斌, 涂文杰, 俞晓. 湛江组结构性黏土中单桩时效性试验研究[J]. 武汉大学学报(工学版), 2018, 51(6):516-521. Tang Bin, Tu Wenjie, Yu Xiao. Experimental Study of Time Effect of Single Pile in Zhanjiang Group Structural Clay[J]. Engineering Journal of Wuhan University (Engineering Science), 2018, 51(6):516-521.
[68] 胡兴昊, 王幸, 娄学谦, 等. 海上复杂地质条件下大直径钢管桩时效性试验研究[J]. 海洋工程, 2019, 37(1):93-100. Hu Xinghao, Wang Xing, Lou Xueqian, et al. Experimental Study on Time Effect of Large Diameter Steel Pipe Piles Under Complex Geological Conditions at Sea[J]. The Ocean Engineering, 2019, 37(1):93-100.
[69] 李广信. 关于试桩法的若干问题[J]. 岩土工程界, 1995, 1(5):30-34. Li Guangxin. Some Problems About the Test-Pile Method[J]. Geotechnical Engineering Field, 1995, 1(5):30-34.
[70] 张晓炜. 试桩测试方法对桩基承载特性的影响研究[J]. 岩土力学, 2005, 26(11):1819-1822, 1833. Zhang Xiaowei. Study on the Influence of Test Methods on the Bearing Behaviors of Piles[J]. Rock and Soil Mechanics, 2005, 26(11):1819-1822, 1833.
[71] Kim H J, Mission J L C. Improved Evaluation of Equivalent Top-Down Load-Displacement Curve from a Bottom-Up Pile Load Test[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2010, 137(6):568-578.
[72] 蔡雨, 徐林荣, 周德泉, 等. 自平衡与传统静载试桩法模型试验研究[J]. 岩土力学, 2019, 40(8):3011-3018. Cai Yu, Xu Linrong, Zhou Dequan, et al. Model Test Research on Method of Self-Balance and Traditional Static Load[J]. Rock and Soil Mechanics, 2019, 40(8):3011-3018.
[73] Gui M W, Bolton M D. Geometry and Scale Effects in Cpt and Pile Design[C]//Proc 1st Int Conf Site Characterization. Atlanta:Microscopy of Oxidation, 1998:1063-1068.
[74] Cudmani R, Osinov V A. The Cavity Expansion Problem for the Interpretation of Cone Penetration and Pressuremeter Tests[J]. Canadian Geotechnical Journal, 2001, 38(6):622-638.
[75] White D J. Field Measurements of Cpt and Pile Base Resistance in Sand[R]. Cambridge:University of Cambridge, 2003.
[76] 曹权, 施建勇, 雷国辉, 等. 基于波速孔压静力触探试验研究软土中单桩桩侧承载力时效性[J]. 岩石力学与工程学报, 2011, 30(7):1482-1487. Cao Quan, Shi Jianyong, Lei Guohui, et al. Research on Time-Effect of Shaft Bearing Capacity of Jacked-in Single Pile in Soft Soil Based on Seismic Piezocone Penetration Tests (SCPTU)[J]. Chinese Journal of Rock Mechanicsand Engineering, 2011, 30(7):1482-1487.
[77] 王钟琦. 我国的静力触探及动静触探的发展前景[J]. 岩土工程学报, 2000, 22(5):517-522. Wang Zhongqi. The Chinese CPT and the Prospect of Penetration Tests[J]. Chinese Journal of Geotechnical Engineering, 2000, 22(5):517-522.
[78] 黎志中, 李兆源, 杨然. 三桥静力触探在桩基中的应用研究[J]. 岩石力学与工程学报, 2015, 34(4):856-864. Li Zhizhong, Li Zhaoyuan, Yang Ran. Application of Triple-Bridge Cone Penetration Test in Pile Foundation[J]. Chinese Journal of Rock Mechanics and Engineering, 2015, 34(4):856-864.
[79] Smith E A L. Pile Driving Analysis with the Wave Equation[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1960, 86(4):35-61.
[80] Forehand P W, REESE J L. Prediction of Pile Capacity by the Wave Equation[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1964, 90(2):1-25.
[81] Rausche F, Goble G, Likins G. Dynamic Determination of Pile Capacity[J]. Journal of Soil Mechanics and Foundations Division, ASCE, 1985, 111(3):367-383.
[82] Likins G. Pile Testing-State-of-the-Art[C]//Proceedings of the 5th Seminar on Special Foundations Engineering and Geotechnics. Sao Paulo:Texas A&M University, 2015:1-17.
[83] 袁建新, 朱国甫. 桩的大应变法波动分析优化算法程序[J]. 岩土工程学报, 1990, 12(6):1-11. Yuan Jianxin, Zhu Guofu. Optimization Algorithm Program for Wave Analysis of Pile withLarge Strain[J]. Chinese Journal of Geotechnical Engineering, 1990, 12(6):1-11.
[84] 黄良机, 林奕禧, 蔡健, 等. 超长PHC管桩桩顶沉降特性的动静对比分析[J]. 岩土力学, 2008, 29(2):507-511. Huang Liangji, Lin Yixi, Cai Jian, et al. Dynamic and Static Comparative Analyses of Settlements of Overlength PHC Pipe Piles[J]. Rock and Soil Mechanics, 2008, 29(2):507-511.
[85] 赵春风, 李尚飞, 张志勇, 等. 高应变测试法中弹限取值的研究及工程应用[J]. 哈尔滨工业大学学报, 2011, 43(2):119-124. Zhao Chunfeng, Li Shangfei, Zhang Zhiyong, et al. Study and Engineering Application of Quake in High-Stain Dynamic Test[J]. Journal of Harbin Institute of Technology, 2011, 43(2):119-124.
[86] 蒋万里, 朱国甫, 张杰. 单桩承载力的一种直接动测法[J]. 岩土力学, 2020, 41(10):1-9. Jiang Wanli, Zhu Guofu, Zhang Jie. A Direct High-Strain Method for the Bearing Capacity of Single Piles[J]. Rock and Soil Mechanics, 2020, 41(10):1-9.
[87] Skov R, Denver H. Time-Dependence of Bearing Capacity of Piles[C]//3rd International Conference on the Application of Stress Wave Theory to Piles. Ottawa:Bi-Tech Publishers, 1988:879-888.
[88] Huang S. Application of Dynamic Measurement on Long H-Pile Driven into Soft Ground in Shanghai[C]//3rd International Conference on the Application of Stress Wave Theory to Piles. Ottawa:Bi-Tech Publishers, 1988:635-643.
[89] Karlsrud K, Clausen C J F, Aas P M. Bearing Capacity of Driven Piles in Clay, the Ngi Approach[C]//Proceedings of the International Symposium on Frontiers in Offshore Geotechnics. Perth:Millpress, 2005:775-782.
[90] Ng K W, Suleiman M T, Sritharan S. Pile Setup in Cohesive Soil:I:Analytical Quantifications and Design Recommendations[J]. Journal of Geotechnical & Geoenvironmental Engineering, 2013, 139(2):210-222.
[91] Bogard J D, Matlock H. Application of Model Pile Tests to Axial Pile Design[C]//22nd Annual Offshore Technology Conference. Houston:Offshore Technology Conference, 1990:271-278.
[92] 李雄, 刘金砺. 饱和软土中预制桩承载力时效性的研究[J]. 岩土工程学报, 1992, 14(4):9-16. Li Xiong, Liu Jinli. Time Effect of Bearing Capacity of Precast Pile in Saturated Soft Soil[J]. Chinese Journal of Geotechnical Engineering, 1992, 14(4):9-16.
[93] 郑添寿. 复压法估算静压预制桩承载力试验[J]. 工程勘察, 2016, 44(2):27-30. Zheng Tianshou. Bearing Capacity Estimation by Re-Pressing of Static Pressed Precast Concrete Pile[J]. Geotechnical Investigation & Surveying, 2016, 44(2):27-30.
[94] Svinkin M R. Discussion on Setup and Relaxation in Glacial Sand[J]. Journal of Geotechnical Engineering, 1996, 122(4):319-321.
[95] Tan S L, Cuthbertson J, Kimmerling R E. Prediction of Pile Set-Up in Non-Cohesive Soils[C]//Contributions in Honor of George G. Los Angeles:ASCE, 2004:50-65.
[96] Zuo Hongliang, Wang Lei, Gao Hongying, et al. Study on Vertical Bearing Capacity and Time Effect of the Jacked-in PHC Pipe Pile in the Cohesive Soil Area[J]. Advanced Materials Research, 2012, 1494(5):2706-2710.
[97] Reddy S C, Stuedlein A W. Time-Dependent Capacity Increase of Piles Driven in the Puget Sound Lowlands[C]//Geo-Congress 2014. Atlanta:ASCE, 2014:464-474.
[98] Hu Shuya, Wu Hao, Liang Xiujuan, et al. A Preliminary Study on the Eco-Environmental Geological Issue of In-Situ Oil Shale Mining by a Physical Model[J/OL]. Chemosphere, 2021:131987[2021-07-03]. https://doi.org/10.1016/j.chemosphere.2021.131987.
[99] 李飒, 李婷婷, 张树德, 等. 基于实测数据的桩基承载力恢复计算与分析[J]. 工程力学, 2018, 35(6):182-190. Li Sa, Li Tingting, Zhang Shude, et al. A Study on Pile Setup Based on Measured in Situ Data[J]. Rock and Soil Mechanics, 2018, 35(6):182-190.
[100] Bullock P J, Schmertmann J H, Mcvay M C, et al. Side Shear Setup:I:Test Piles Driven in Florida[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2005, 131(3):292-300.
[101] Yang L, Liang R. Incorporating Set-up into Reliability-Based Design of Driven Piles in Clay[J]. Canadian Geotechnical Journal, 2006, 43(9):946-955.
[102] Ng K W, Rolling M, Abdelsalam S S, et al. Pile Setup in Cohesive Soil:I:Experimental Investigation[J]. Journal of Geotechnical and Geo-Environmental Engineering, 2013, 139(2):199-209.
[1] 桑松魁, 王永洪, 张明义, 孔亮, 吴文兵, 陈志雄, 李兆龙, 张启军. 粉土与粉质黏土互层中静压桩桩土界面孔隙水压力[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1551-1559.
[2] 王永洪, 桑松魁, 张明义, 李长河, 韩勃, 袁炳祥, 项俊宁, 王振杰, 刘慧宁. 黏性土中静压桩沉桩过程现场试验及桩土界面桩侧土压力分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1535-1543.
[3] 张明义, 刘雪颖, 王永洪, 白晓宇, 桑松魁. 粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1804-1813.
[4] 王常明, 常高奇, 吴谦, 李文涛. 静压管桩桩-土作用机制及其竖向承载力确定方法[J]. 吉林大学学报(地球科学版), 2016, 46(3): 805-813.
[5] 孙广利,李广杰,周景宏,于光源. 长春硬塑状态老黏性土地基承载力[J]. 吉林大学学报(地球科学版), 2014, 44(2): 591-595.
[6] 鲁功达,晏鄂川,王环玲,王雪明,谢良甫. 基于岩石地质本质性的碳酸盐岩单轴抗压强度预测[J]. 吉林大学学报(地球科学版), 2013, 43(6): 1915-1921.
[7] 束龙仓, 荆艳东, 黄修东, 余钟波, 王振龙. 改进的无作物潜水蒸发经验公式[J]. 吉林大学学报(地球科学版), 2012, 42(6): 1859-1865.
[8] 王雯璐, 赵大军, 王磊. 考虑侧填荷载的分离式基础涵洞地基承载力新算法和试验[J]. J4, 2011, 41(3): 771-776.
[9] 李雨浓, 李镜培, 赵仲芳, 朱火根. 层状地基静压桩贯入过程机理试验[J]. J4, 2010, 40(6): 1409-1414.
[10] 卞建民,汤 洁,林年丰,李昭阳,张 芳. 半干旱地区水资源承载能力研究--以松嫩平原西南部霍林河流域为例[J]. J4, 2006, 36(01): 73-0077.
[11] 冷曦晨,佴 磊,亓 宾. 桩基承载力模拟试验中相似性问题[J]. J4, 2005, 35(04): 491-0495.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .