吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1551-1559.doi: 10.13278/j.cnki.jjuese.20210041

• 绿色岩土工程 • 上一篇    下一篇

粉土与粉质黏土互层中静压桩桩土界面孔隙水压力

桑松魁1,2, 王永洪1, 张明义1, 孔亮3, 吴文兵4, 陈志雄5, 李兆龙6, 张启军7   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266033;
    2. 中基久瑞岩土工程有限公司, 山东 青岛 266061;
    3. 青岛理工大学理学院, 山东 青岛 266033;
    4. 中国地质大学(武汉)工程学院, 武汉 430074;
    5. 重庆大学土木工程学院, 重庆 400045;
    6. 中青建安建设集团有限公司, 山东 青岛 266033;
    7. 青岛业高建设工程有限公司, 山东 青岛 266022
  • 收稿日期:2021-02-03 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 王永洪(1984-),男,讲师,博士,主要从事地基基础及岩土工程测试方面的研究,E-mail:hong7986@163.com E-mail:hong7986@163.com
  • 作者简介:桑松魁(1989-),男,博士研究生,主要从事桩基础方面的研究,E-mail:18306426194@163.com
  • 基金资助:
    国家自然科学基金项目(51708312);山东省重点研发计划项目(2018GSF117010)

Pore Water Pressure at Pile-Soil Interface of Jacked Pile in Silty Soil and Silty Clay

Sang Songkui1,2, Wang Yonghong1, Zhang Mingyi1, Kong Liang3, Wu Wenbing4, Chen Zhixiong5, Li Zhaolong6, Zhang Qijun7   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. Zhongji Jiurui Geotechnical Engineering Co., Ltd., Qingdao 266061, Shandong, China;
    3. School of Science, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    4. Faculty of Engineering, China University of Geosciences, Wuhan 430074, China;
    5. School of Civil Engineering, Chongqing University, Chongqing 400045, China;
    6. Zhongqing Jian'an Group, Ltd., Qingdao 266033, Shandong, China;
    7. Qingdao Yegao Construction Engineering Co., Ltd., Qingdao 266022, Shandong, China
  • Received:2021-02-03 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Supported by the National Natural Science Foundation of China (51708312) and the Key Research and Development Program of Shandong Province (2018GSF117010)

摘要: 为研究层状黏性土在静压桩沉桩过程中桩土界面孔隙水压力的分布规律,依托山东东营某桩基工程开展了现场足尺静压桩试验,分析了桩土界面孔隙水压力的变化规律,探讨了桩土界面超孔隙水压力的分布特征,明确了桩土界面孔隙水压力和超孔隙水压力的消散特性,并结合水力压裂理论和孔穴扩张理论,揭示了沉桩过程中桩土界面沿桩长方向超孔隙水压力的分布形式。试验结果表明:孔隙水压力、超孔隙水压力与土层性质密切相关,二者均在粉土层中增长较慢,在粉质黏土层中增长较快;在同一深度处,两者均存在明显的消散现象,在粉土中的消散程度明显大于粉质黏土中;采用水力压裂理论结合孔穴扩张理论计算的超孔隙水压力沿桩长方向的变化规律与试验值相吻合;桩身贯入深度越大,超孔隙水压力理论计算值与现场实测值越接近。

关键词: 静压桩, 桩土界面, 孔隙水压力, 超孔隙水压力, 现场试验

Abstract: In order to study the distribution of pore water pressure at the pile-soil interface in the process of static pressure pile sinking in a layered clay, based on a pile foundation project in Dongying, Shandong Province, a full scale static pressure pile test was carried out. The variation law of pore water pressure at the pile-soil interface was analyzed, the distribution characteristics of excess pore water pressure at the pile-soil interface were discussed, and the dissipation characteristics of pore water pressure and excess pore water pressure at the pile-soil interface were clarified. Combined with the theory of hydraulic fracturing and the theory of hole expansion, the distribution pattern of excess pore water pressure at the pile-soil interface along the direction of pile length during the process of pile sinking was revealed. The experimental results show that pore water pressure and excess pore water pressure are closely related to soil layer properties. Both of them increase slowly in the silt soil layer and faster in the silty clay layer. At the same depth, both of them are obviously dissipated, and the degree of dissipation in silty soil is obviously greater than that in silty clay. The variation law of excess pore water pressure along the direction of pile length calculated by hydraulic fracturing theory combined with hole expansion theory is consistent with the test value. The greater the penetration depth of pile, the closer the theoretical calculation value of excess pore water pressure is to the field measured value.

Key words: jacked pile, pile-soil interface, pore water pressure, excess pore water pressure, field test

中图分类号: 

  • TU473.11
[1] 张明义. 层状地基上静力压入桩的沉桩过程及承载力的试验研究[D]. 重庆:重庆大学, 2001. Zhang Mingyi. Experimental Study on Pile Sinking Process and Bearing Capacity of Statically Pressed Piles on Layered Foundation[D]. Chongqing:Chongqing University, 2001.
[2] Murthy D S, Robinson R G, Rajagopal K. Formation of Soil Plug in Open-Ended Pipe Piles in Sandy Soils[J]. International Journal of Geotechnical Engineering, 2021, 15(5):519-529.
[3] 张明义, 刘雪颖, 王永洪, 等. 粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6):1804-1813. Zhang Mingyi, Liu Xueying, Wang Yonghong, et al. Field Test on Influencing Mechanism of Sility Soil and Sility Clay on Tip Resistance of Static Pressure Pile[J]. Journal of Jilin University (Earth Science Edition), 2020, 50(6):1804-1813.
[4] Poulos H G. Pile Foundation Analysis and Design[M]. New York:John Wiley & Sons, 1980:6-9.
[5] 高子坤, 施建勇. 饱和黏土中沉桩挤土形成超静孔压分布理论解答研究[J]. 岩土工程学报, 2013, 35(6):1109-1114. Gao Zikun, Shi Jianyong. Theoretical Solutions of Distribution of Excess Pore Water Pressure Distribution in Sinking Soil in Saturated Clay[J]. Chinese Journal of Geotechnical Engineering, 2013, 35(6):1109-1114.
[6] Hunt C E, Pestana J M, Bray J D, et al. Effect of Pile Installation on Static and Dynamic Properties of Soft Clays[M]. Denver:Innovations and Applications in Geotechnical Site Characterization, 2000:199-212.
[7] 王育兴, 孙钧. 打桩施工对周围土性及孔隙水压力的影响[J]. 岩石力学与工程学报, 2004, 23(1):153-158. Wang Yuxing, Sun Jun. Influence of Pile Driving on Properties of Soils Around Pile and Pore Water Pressure[J]. Chinese Journal of Rock Mechanics and Engineering, 2004, 23(1):153-158.
[8] 张亚国, 李镜培.静压沉桩引起的土体应力与孔压分布特征[J]. 上海交通大学学报, 2018, 52(12):1587-1593. Zhang Yaguo, Li Jingpei. Distribution Characteristics of Stress and Pore Pressure Induced by Pile Jacking[J]. Journal of Shanghai Jiaotong University, 2018, 52(12):1587-1593.
[9] Azzouz A S, Morrison M J. Field Measurements on Model Pile in Two Clay Deposits[J]. Journal of Geotechnical Engineering, 1988, 114(1):104-121.
[10] 李林, 李镜培, 孙德安, 等. 考虑天然黏土应力各向异性的静压沉桩效应研究[J]. 岩石力学与工程学报, 2016, 35(5):1055-1064. Li Lin, Li Jingpei, Sun De'an, et al.Pile Jacking-in Effects Considering Stress Anisotropy of Natural Clay[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(5):1055-1064.
[11] 李镜培, 李林, 孙德安, 等. 基于CPTU测试的K0固结黏土中静压桩时变承载力研究[J]. 岩土工程学报, 2017, 39(2):193-200. Li Jingpei, Li Lin, Sun De'an, et al. Time-Dependent Bearing Capacity of Jacked Piles in K0 Consolidated Clay Based on CPTU Tests[J]. Chinese Journal of Geotechnical Engineering, 2017, 39(2):193-200.
[12] 赵明华, 占鑫杰, 邹新军, 等. 饱和软黏土中沉桩后桩周土体固结分析[J]. 工程力学, 2012, 29(10):91-97. Zhao Minghua, Zhan Xinjie, Zou Xinjun, et al. Consolidation Analysis Around a Driven Pile in Saturated Clay[J]. Engineering Mechanics, 2012, 29(10):91-97.
[13] 李镜培, 方睿, 李林. 考虑土体三维强度特性的静压桩周超孔压解析及演变[J]. 岩石力学与工程学报, 2016, 35(4):847-855. Li Jingpei, Fang Rui, Li Lin. Variation of Excess Pore Pressure Around Jacked Piles Considering the Three-Dimensional Strength of Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2016, 35(4):847-855.
[14] 李镜培, 周攀, 李亮, 等.饱和结构性黄土不排水柱孔扩张问题弹塑性解[J]. 同济大学学报(自然科学版), 2021, 49(2):163-172. Li Jingpei, Zhou Pan, Li Liang, et al. Elastic-Plastic Solution for Undrained Expansion of Cylindrical Cavity in Saturated Structured Loess[J]. Journal of Tongji University (Natural Science), 2021, 49(2):163-172.
[15] 郑金辉, 齐昌广, 王新泉, 等.考虑砂土颗粒破碎的柱孔扩张问题弹塑性分析[J]. 岩土工程学报, 2019, 41(11):2156-2164. Zheng Jinhui, Qi Changguang, Wang Xinquan, et al. Elasto-Plastic Analysis of Cylindrical Cavity Expansion Considering Particle Breakage of Sand[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(11):2156-2164.
[16] 李钰, 蔡超君.静压沉桩及锤击沉桩对饱和砂土中超孔隙水压力的影响[J]. 科学技术与工程, 2015, 15(35):228-232. Li Yu, Cai Chaojun. The Influence of Static Pressure Pile and Hammer Pile Construction on the Excess Pore Pressure in Saturated Sand[J]. Science Technology and Engineering, 2015, 15(35):228-232.
[17] 李雨浓, Barry M Lehane, 刘清秉.黏土中静压沉桩离心模型[J]. 工程科学学报, 2018, 40(3):285-292. Li Yunong, Barry M Lehane, Liu Qingbing. Centrifuge Modeling of Jacked Pile in Clay[J]. Journal of Engineering Science, 2018, 40(3):285-292.
[18] Hwang J H, Liang N, Chen C S. Ground Response During Pile Driving[J]. Journal of Geotechnical and Geoenvironmental Engineering, 2001, 127(11):939-949.
[19] 唐世栋, 何连生, 傅纵. 软土地基中单桩施工引起的超孔隙水压力[J]. 岩土力学, 2002, 23(6):725-729. Tang Shidong, He Liansheng, Fu Zong. Excess Pore Water Pressure Caused by an Installing Pile in Soft Foundation[J]. Rock and Soil Mechanics, 2002, 23(6):725-729.
[20] 张忠苗, 谢志专, 刘俊伟, 等. 粉土与淤质互层土中管桩压入过程孔隙水压力试验研究[J]. 岩土工程学报, 2010, 32(增刊2):533-536. Zhang Zhongmiao, Xie Zhizhuan, Liu Junwei, et al. Experimental Study on Pore Pressure During Pile Driving in Silty Soil with Mucky Soil Interbed[J]. Chinese Journal of Geotechnical Engineering, 2010, 32(Sup. 2):533-536.
[21] 鹿群, 张建新, 刘寒鹏. 考虑施工方向影响的静压桩挤土效应观测与分析[J]. 土木工程学报, 2011, 44(增刊2):102-105. Lu Qun, Zhang Jianxin, Liu Hanpeng. A Case History and Its Analysis About Squeezing Effects of Jacked Piles Considering Construction Direction[J]. China Civil Engineering Journal, 2011, 44(Sup. 2):102-105.
[22] Bond A J, Jardine R J. Shaft Capacity of Displacement Piles in High OCR Clay[J]. Geotechnique, 1995, 45(1):3-23.
[23] 张忠苗, 谢志专, 刘俊伟, 等. 淤质与粉质互层土中管桩沉桩过程的土压力[J]. 浙江大学学报(工学版), 2011, 45(8):1430-1434. Zhang Zhongmiao, Xie Zhizhuan, Liu Junwei, et al. The Earth Pressure During Pile Driving in Silty with Mucky Soil Interbed[J]. Journal of Zhejiang University (Engineering Science), 2011, 45(8):1430-1434.
[24] 朱向荣, 何耀辉, 徐崇峰, 等. 饱和软土单桩沉桩超孔隙水压力分析[J]. 岩石力学与工程学报, 2005, 24(增刊2):5740-5744. Zhu Xiangrong, He Yaohui, Xu Chongfeng, et al. Excess Pore Water Pressure Caused by Single Pile Driving on Saturated Soft Soil[J]. Chinese Journal of Rock Mechanics and Engineering, 2005, 24(Sup. 2):5740-5744.
[1] 王永洪, 桑松魁, 张明义, 李长河, 韩勃, 袁炳祥, 项俊宁, 王振杰, 刘慧宁. 黏性土中静压桩沉桩过程现场试验及桩土界面桩侧土压力分析[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1535-1543.
[2] 王永洪, 黄永峰, 张明义, 李长河, 苏雷, 仉文岗, 林沛元, 崔纪飞, 焉振. 静压桩承载力时间效应的研究进展[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1490-1505.
[3] 张明义, 刘雪颖, 王永洪, 白晓宇, 桑松魁. 粉土及粉质黏土对静压沉桩桩端阻力影响机制现场试验[J]. 吉林大学学报(地球科学版), 2020, 50(6): 1804-1813.
[4] 洪勇, 周蓉, 郑孝玉. 不同排水条件下饱和砂土快速大剪切力学特性[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1416-1426.
[5] 赵权利,尚岳全,支墨墨. 平推式滑坡启动判据的修正[J]. 吉林大学学报(地球科学版), 2014, 44(2): 596-602.
[6] 沈宇鹏, 冯瑞玲, 余江, 刘辉. 增压式真空预压处理软基的加固机理[J]. J4, 2012, 42(3): 792-797.
[7] 闫春岭, 唐益群, 王元东, 李仁杰. 循环荷载下加固土体孔压的模糊正交试验分析[J]. J4, 2011, 41(3): 805-811.
[8] 李雨浓, 李镜培, 赵仲芳, 朱火根. 层状地基静压桩贯入过程机理试验[J]. J4, 2010, 40(6): 1409-1414.
[9] 吴春勇,王剑平,李景林,王清,史彬. 超深方块码头稳定性的离心模型试验[J]. J4, 2006, 36(03): 399-403.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李春柏,张新涛,刘 立,任延广,孟 鹏. 布达特群热流体活动及其对火山碎屑岩的改造作用--以海拉尔盆地贝尔凹陷为例[J]. J4, 2006, 36(02): 221 -0226 .
[2] 邹新宁,孙 卫,张盟勃,万玉君. 地震属性分析在岩性气藏描述中的应用[J]. J4, 2006, 36(02): 289 -0294 .
[3] 郭洪金,李勇,钟建华,王海侨. 山东东辛油田古近系沙河街组一段碳酸盐岩储集特征[J]. J4, 2006, 36(03): 351 -357 .
[4] 杜业波,季汉成,朱筱敏. 川西前陆盆地上三叠统须家河组成岩相研究[J]. J4, 2006, 36(03): 358 -364 .
[5] 刘家军,李志明,刘建明,王建平,冯彩霞,卢文全. 自然界中的辉锑矿-硒锑矿矿物系列[J]. J4, 2005, 35(05): 545 -553 .
[6] 苏继军,殷 琨,郭同彤. 金刚石绳索取心钻杆接头螺纹的优化研究[J]. J4, 2005, 35(05): 677 -680 .
[7] 唐健生,夏日元,邹胜章,梁 彬. 新疆南天山岩溶系统介质结构特征及其水文地质效应[J]. J4, 2005, 35(04): 481 -0486 .
[8] 熊 彬. 大回线瞬变电磁法全区视电阻率的逆样条插值计算[J]. J4, 2005, 35(04): 515 -0519 .
[9] 杜春国,邹华耀,邵振军,张俊. 砂岩透镜体油气藏成因机理与模式[J]. J4, 2006, 36(03): 370 -376 .
[10] 许盛伟,王明常,白亚辉,张学明. 基于J2EE的分布式海量影像分发服务研究和实现[J]. J4, 2006, 36(03): 491 -496 .