吉林大学学报(地球科学版) ›› 2024, Vol. 54 ›› Issue (5): 1615-1628.doi: 10.13278/j.cnki.jjuese.20220327

• 地质工程与环境工程 • 上一篇    下一篇

穿坡油气管道的框架桩防护结构分析方法

黎俊杰1, 肖世国2   

  1. 1.西南交通大学地质工程系,成都610031

    2.高速铁路线路工程教育部重点实验室(西南交通大学),成都610031

  • 出版日期:2024-09-26 发布日期:2024-10-12
  • 基金资助:

    国家自然科学基金项目(51578466);国家石油天然气管网集团有限公司科研项目(GWHT20210014429)


Analysis Method of Frame-Type Stabilizing Piles for Protecting Petroleum Pipelines Through Hillslopes

Li Junjie1, Xiao Shiguo2   

  1. 1. Department of Geological Engineering, Southwest Jiaotong University, Chengdu 610031, China

    2. Key Laboratory of High-Speed Railway Engineering (Southwest Jiaotong University), Ministry of Education,

    Chengdu 610031, China

  • Online:2024-09-26 Published:2024-10-12
  • Supported by:
    Supported by the National Natural Science Foundation of China (51578466) and the Science and Research Project of PipeChina (GWHT20210014429)

摘要:

针对沿山坡走向铺设的埋地油气管道存在的抗震防护问题,提出了一种新型的框架型抗滑桩式管道防护结构。在采用拟静力法确定作用于结构地震滑坡推力的基础上,将位于滑面以上的结构受荷段作为底端固定的平面框架结构,采用超静定平面刚架结构模型分析;而位于滑面以下的嵌固段则为埋置于稳定地层的两单桩结构,采用侧向受荷的弹性地基梁模型分析,由此建立了框架型抗滑桩的内力及位移计算方法。实例分析表明:框架桩前、后桩及上、下横梁弯矩与剪力的理论计算值与数值模拟结果误差均在±20%以内,理论结果偏于保守;水平地震影响系数对结构内力影响显著,结构内力最大值随水平地震影响系数增加近似呈线性增大,而竖向地震影响系数影响较弱;结构最大内力与土体重度呈线性正相关性,与黏聚力和内摩擦角呈非线性负相关性,且随着土体抗剪强度参数的增大,前、后桩以及上、下横梁的内力分别趋于接近;前、后排桩与上、下横梁的最大内力分别与桩体抗弯刚度呈非线性正相关性与负相关性,而分别与桩体嵌固深度近似呈线性正相关性与负相关性;框架桩间距对结构内力影响显著,而前后桩排间距则对结构内力影响较小。

关键词: 油气管道, 边坡, 框架桩, 平面刚架, 弹性地基梁

Abstract:

In order to availably protect embedded petroleum pipelines through a slope particularly under seismic actions, a new frame-type stabilizing pile with the pipelines covered is proposed. On the basis of determining the seismic landslide thrust force on the structure by the pseudo-static method,the load section of the structure located above the sliding surface is taken as the plane frame structure which is taken as the plane rigid frame structure with fixed bottom. A super-static plane rigid frame structure model is used to analyze the loading section. The part of the structure below the slip surface called the embedded section is actually two independent piles buried in the stable layer, which can be analyzed using the elastic beam on foundation model under lateral loads on their tops. Thus, a calculation method of internal forces and displacements of the frame-type stabilizing pile is established by combing the two parts. The results of an example show that the deviation between the proposed and the numerical bending moments and shear forces of the front and rear piles as well as the upper and lower beams of the frame-type stabilizing pile is within 20%, and the proposed results are relatively conservative. The influence of horizontal seismic coefficient on the internal forces is obvious. The maximum value of the internal forces increases approximately linearly with the seismic coefficient, while the influence of vertical seismic coefficient is slight. The maximum internal force of the structure is linear positive correlation with soil unit weight and nonlinear negative correlation with cohesion and internal friction angle of soil, respectively. As soil shear strength parameters increase, the internal forces of the front and rear piles together with the upper and lower beams tend to be close, respectively. The maximum internal forces of the two piles and the two beams are nonlinear positive and negative correlation with flexible rigidity of the piles, respectively; But are approximately linear positive and negative correlation with embedded depth of the piles, respectively. The separation between adjacent structures has obvious influence on the structural internal forces, but the row spacing between the two piles in the same structure has slight effect on them.

Key words: petroleum pipelines, slope, frame-type stabilizing pile, plane rigid frame, elastic beam on foundation

中图分类号: 

  • TU375.4
[1] 欧阳琦, 陈欣, 危润初, 伍诗梦, 朱志远.

紫鹊界梯田失稳机制 [J]. 吉林大学学报(地球科学版), 2024, 54(2): 581-591.

[2] 师文豪, 杨天鸿. 渗流应力耦合作用下顺倾向层状边坡各向异性渗流特征数值模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1783-1788.
[3] 黄达, 马昊, 石林. 反倾层状岩质边坡倾倒变形机理与影响因素的离散元模拟[J]. 吉林大学学报(地球科学版), 2021, 51(6): 1770-1782.
[4] 张海清, 贾会会, 聂庆科. 土体抗拉强度对均质边坡稳定性的影响[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1324-1337.
[5] 徐文刚, 余旭荣, 年廷凯, 曹琦, 曹爱武, 裴振伟. 基于FLAC3D的三维边坡稳定性强度折减法计算效率改进算法及其应用[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1347-1355.
[6] 吕建航, 杨忠年, 时伟, 李国玉, 凌贤长, 张莹莹. 冻融循环下加筋膨胀土边坡稳定性模型试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1587-1596.
[7] 曹长鑫, 孙红月. 黄土地区边坡虹吸排水孔间距优化[J]. 吉林大学学报(地球科学版), 2021, 51(4): 1152-1159.
[8] 胡高建, 杨天鸿, 张飞. 抚顺西露天矿南帮边坡破坏机理及内排压脚措施[J]. 吉林大学学报(地球科学版), 2019, 49(4): 1082-1092.
[9] 李论基, 姚青青, 安玉科. 老滑坡路段路堑开挖与超前支护效果[J]. 吉林大学学报(地球科学版), 2018, 48(6): 1767-1777.
[10] 魏恺泓, 裴向军, 张世殊, 冉从彦, 崔中涛, 李青春, 李进元. 基于IBIS-L的某黄土高填方边坡支护结构变形特征[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1556-1565.
[11] 唐军峰, 唐雪梅, 曾向农, 杨军, 李学政. 蓄水后库岸堆积体边坡变形特征及其稳定性分析[J]. 吉林大学学报(地球科学版), 2018, 48(5): 1546-1555.
[12] 孙红月,熊晓亮,尚岳全,蔡岳良. 边坡虹吸排水管内空气积累原因及应对措施[J]. 吉林大学学报(地球科学版), 2014, 44(1): 278-284.
[13] 杜丽丽,孙红月,尚岳全. 松散堆积土边坡充气排水方法[J]. 吉林大学学报(地球科学版), 2013, 43(3): 877-882.
[14] 王科,王常明,王彬, 姚康,王天佐. 基于MorgensternPrice法和强度折减法的边坡稳定性对比分析[J]. 吉林大学学报(地球科学版), 2013, 43(3): 902-907.
[15] 王吉亮,杨静,李会中,黄孝泉,刘冲平,白伟,郝文忠,朱永生. 乌东德水电站左岸拱肩槽边坡稳定性[J]. 吉林大学学报(地球科学版), 2013, 43(2): 528-536.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
No Suggested Reading articles found!