吉林大学学报(地球科学版) ›› 2021, Vol. 51 ›› Issue (5): 1587-1596.doi: 10.13278/j.cnki.jjuese.20200285

• 绿色岩土工程 • 上一篇    下一篇

冻融循环下加筋膨胀土边坡稳定性模型试验

吕建航1, 杨忠年1, 时伟1, 李国玉2, 凌贤长1,3, 张莹莹1   

  1. 1. 青岛理工大学土木工程学院, 山东 青岛 266033;
    2. 中国科学院西北生态环境资源研究院冻土工程国家重点实验室, 兰州 730000;
    3. 哈尔滨工业大学土木工程学院, 哈尔滨 150001
  • 收稿日期:2020-12-02 出版日期:2021-09-26 发布日期:2021-09-29
  • 通讯作者: 杨忠年(1985-),男,副教授,主要从事岩土工程和隧道工程方面的教学和科研工作,E-mail:yzhnqd@qut.edu.cn E-mail:yzhnqd@qut.edu.cn
  • 作者简介:吕建航(1997-),男,硕士研究生,主要从事膨胀土边坡稳定与膨胀土改良与加固方面的研究,E-mail:jianhang.lv@foxmail.com
  • 基金资助:
    冻土工程国家重点实验室开放基金项目(SKLFSE201601);山东省泰山学者专项基金项目(2015-212);国家重大科研仪器开发基金项目(41627801)

Model Test of Reinforced Expansive Soil Slope Stability in Freeze-Thaw Cycles

Lü Jianhang1, Yang Zhongnian1, Shi Wei1, Li Guoyu2, Ling Xianzhang1,3, Zhang Yingying1   

  1. 1. School of Civil Engineering, Qingdao University of Technology, Qingdao 266033, Shandong, China;
    2. State Key Laboratory of Frozen Soil Engineering, Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China;
    3. School of Civil Engineering, Harbin Institute of Technology, Harbin 150001, China
  • Received:2020-12-02 Online:2021-09-26 Published:2021-09-29
  • Supported by:
    Support by the Foundation for Opening of State Key Laboratory of Frozen Soil Engineering (SKLFSE201601), the Taishan Scholars Special Fund Project of Shandong Province (2015-212) and the National Major Scientific Research Instrument Development Fund (41627801)

摘要: 控制边坡在冻融循环中的劣化作用,可保障季节冻土区域膨胀土边坡长期稳定。为确定土工格栅对膨胀土边坡在冻融循环过程中的稳定效果与工程意义,本文开展了膨胀土边坡模型试验,对比冻融过程中边坡内土压力、含水率、位移、温度变化。结果表明:土工格栅可约束膨胀土冻融裂缝,使裂缝发育更为均匀一致,同时减小边坡位移;加筋材料能抑制边坡水分迁移与热传导并减小土压力变化;对膨胀土边坡加筋处理可显著降低含水率波动幅值,从而减小膨胀土受含水率变化引发的胀缩劣化;不同于普通黏土,膨胀土边坡冻融循环中呈现冻缩融胀特点,而边坡加筋可有效提升冻土区膨胀土边坡的冻融稳定性,具有工程应用价值。

关键词: 膨胀土, 边坡稳定性, 边坡加筋, 冻融循环, 裂缝

Abstract: China has a large area of frozen soil, and the long-term stability of the expansive soil slopes in the seasonal frozen area can be guaranteed by controlling the deterioration of the slopes in freezing and melting cycles. In order to determine the role of geogrid in the stability of the expansive soil slopes during the freeze-thaw cycle, the model test of the expansive soil slope is carried out in this paper. The results show that:1) The geogrid can restrain the freeze-thaw cracks of expansive soil, make the crack development more uniform, and reduce the slope displacement; 2) The reinforced material can inhibit the water migration and heat conduction of the slope and reduce the change of soil pressure; 3) The reinforced treatment of expansive soil slope can significantly reduce the fluctuation of water content, so as to reduce the swelling and shrinking of expansive soil caused by the change of water content; 4) Different from ordinary clay, the expansive soil slopes show the characteristics of freeze shrinkage and thaw expansion in the freeze-thaw cycle, and the slope reinforcement can effectively improve the freeze-thaw stability of expansive soil slopes in frozen soil areas, which has engineering application value.

Key words: expansive soil, slope stability, slope reinforcement, freeze-thaw cycles, cracks

中图分类号: 

  • P642.2
[1] Cheng S H, Wang L, Wang Y B, et al. Design and Type Selection of Concrete-Lined Small Canals in Cut and Expansive Soil in Cold Regions[J]. Irrigation and Drainage, 2019, 68(5):909-924.
[2] Yang Z N, Zhang L, Ling X Z, et al. Experimental Study on the Dynamic Behavior of Expansive Soil in Slopes Under Freeze-Thaw Cycles[J]. Cold Regions Science and Technology, 2019, 163:27-33.
[3] 王蒙. 淮南弱膨胀土冻胀融沉特性研究[D]. 淮南:安徽理工大学, 2019. Wang Meng. Study on Characteristics of Frost Heaving and Thaw Settlement of Huainan Weak Expansive Soil[D]. Huainan:Anhui University of Science and Technology, 2019.
[4] 任朝霞. 冻融作用对非饱和土路基水分迁移及强度的影响研究[D]. 西安:西安理工大学, 2020. Ren Zhaoxia. Study on the Influence of Freeze-Thaw Action on Moisture Transfer and Strength of Unsaturated Subgrade Soil[D].Xi'an:Xi'an University of Technology, 2020.
[5] Lu Y, Liu S, Zhang Y G, et al. Freeze-Thaw Performance of a Cement-Treated Expansive Soil[J]. Cold Regions Science and Technology, 2020, 170:102926.
[6] 蔡正银, 朱洵, 黄英豪, 等. 湿干冻融耦合循环作用下膨胀土裂隙演化规律[J]. 岩土工程学报, 2019, 41(8):1381-1389. Cai Zhengyin, Zhu Xun, Huang Yinghao, et al. Evolution Rules of Fissures in Expansive Soils Under Cyclic Action of Coupling Wetting-Drying and Freeze-Thaw[J]. Chinese Journal of Geotechnical Engineering, 2019, 41(8):1381-1389.
[7] Zhang R, Long M X, Lan T, et al. Stability Analysis Method of Geogrid Reinforced Expansive Soil Slopes and Its Engineering Application[J]. Journal of Central South University, 2020, 27:1965-1980.
[8] 阎凤翔, 白晓红, 董晓强. 土工格栅-建筑渣土界面摩阻特性试验研究[J]. 岩土力学, 2020, 41(12):1-9. Yan Fengxiang, Bai Xiaohong, Dong Xiaoqiang. Experimental Study on the Interface Friction Characteristics of Geogrids and Construction Residue[J]. Rock and Soil Mechanics, 2020, 41(12):1-9.
[9] 田芳. 冻融循环作用下膨胀土的力学与孔隙分布特点[J]. 山东农业大学学报(自然科学版), 2020, 51(2):365-369. Tian Fang. Mechanics and Pore Distribution Characteristics of Expansive Soil Under the Freezing-Thawing Cycle[J]. Journal of Shandong Agricultural University (Natural Science Edition), 2020, 51(2):365-369.
[10] 许雷, 刘斯宏, 鲁洋, 等. 冻融循环下膨胀土物理力学特性研究[J]. 岩土力学, 2016, 37(增刊2):167-174. Xu Lei, Liu Sihong, Lu Yang, et al. Physico-Mechanical Properties of Expansive Soil Under Freeze-Thaw Cycles[J]. Rock and Soil Mechanics, 2016, 37(Sup.2):167-174.
[11] 蔡正银, 朱锐, 黄英豪, 等. 冻融过程对膨胀土渠道边坡劣化模式的影响[J]. 水利学报, 2020, 51(8):915-923. Cai Zhengyin, Zhu Rui, Huang Yinghao, et al. Influences of Freeze-Thaw Process on the Deterioration Mode of Expansive Soil Canal Slope[J]. Shuili Xuebao, 2020, 51(8):915-923.
[12] 徐丽丽, 刘丽佳, 徐昭巍, 等. 季节冻土区膨胀土边坡冻害防护综合技术[J]. 岩土工程学报, 2016, 38(增刊1):216-220. Xu Lili, Liu Lijia, Xu Zhaowei, et al. Integrated Protection Technology for Expansive Soil Slopes in Seasonally Frozen Zones[J]. Chinese Journal of Geotechnical Engineering, 2016, 38(Sup.1):216-220.
[13] 谭波, 杨和平, 罗奕. 土工格栅柔性支护在处治膨胀土路堑滑坡中的应用[J]. 桂林工学院学报, 2006(2):200-204. Tan Bo, Yang Heping, Luo Yi. Application of Geogrid Flexible Support in Dealing with Expansive Soil Cutting Landslide[J]. Journal of Guilin University of Technology, 2006(2):200-204.
[14] 万亮. 土工格栅与膨胀土相互作用的拉拔试验研究[D]. 长沙:长沙理工大学, 2007. Wan Liang. Research on the Interaction Between Expansive Soil and Geogrids by Pullout Test[D]. Changsha:Changsha University of Science &Technology, 2007.
[15] 土工试验方法标准:GB/T 50123-2019[S]. 北京:中国计划出版社, 2019. Standard for Geotechnical Testing Method:GB/T 50123-2019[S]. Beijing:China Planning Press, 2019.
[16] 膨胀土地区建筑技术规范:GB 50112-2013[S]. 北京:中国计划出版社, 2013. Technical Code for Buildings in Expansive Soil Regions:GB 50112-2013[S]. Beijing:China Planning Press, 2019.
[17] 于琳琳. 不同人工冻结条件下土的冻胀试验研究[D].哈尔滨:哈尔滨工业大学, 2006. Yu Linlin. Test Research on Frost Heave of Soils Under Different Artificial Freezing Conditions[D]. Harbin:Harbin Institute of Technology, 2006.
[18] 范秋雁, 刘金泉, 杨典森, 等. 不同降雨模式下膨胀岩边坡模型试验研究[J]. 岩土力学, 2016, 37(12):3401-3409. Fan Qiuyan, Liu Jinquan, Yang Diansen, et al. Model Test Study of Expansive Rock Slope Under Different Types of Precipitation[J]. Rock and Soil Mechanics, 2016, 37(12):3401-3409.
[19] 朱斯伊, 王志俭, 曹玲, 等.冻融循环下荆门膨胀土剪切试验研究[J]. 三峡大学学报(自然科学版), 2019, 41(3):59-63. Zhu Siyi, Wang Zhijian, Cao Ling, et al. Shear Test of Jingmen Expansive Soil Under Freezing-Thawing Cycles[J]. Journal of China Three Gorges University (Natural Sciences), 2019, 41(3):59-63.
[20] 殷宗泽, 袁俊平, 韦杰, 等. 论裂隙对膨胀土边坡稳定的影响[J]. 岩土工程学报, 2012, 34(12):2155-2161. Yin Zongze, Yuan Junping, Wei Jie, et al. Influences of Fissures on Slope Stability of Expansive Soil[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(12):2155-2161.
[21] 杨和平, 程斌, 肖杰, 等. 土工格栅反包加筋支护膨胀土堑坡的工作机理[J]. 公路交通科技, 2015, 32(9):1-8. Yang Heping, Cheng Bin, Xiao Jie, et al. Working Mechanism of Turn-Up Geogrid Reinforced Expansive Soil Cutting Slope[J]. Journal of Highway and Transportation Research and Development, 2015, 32(9):1-8.
[22] 李飞, 周健, 张姣. 土工合成材料加筋边坡宏细观机理模型试验研究[J]. 岩土工程学报, 2012, 34(6):1080-1087. Li Fei, Zhou Jian, Zhang Jiao. Model Tests on Macro-Mesoscopic Mechanism of Geosynthetic-Reinforced Slopes[J]. Chinese Journal of Geotechnical Engineering, 2012, 34(6):1080-1087.
[23] Konrad J M, Morgenstern N R. A Mechanistic Theory of Ice Lens Formation in Fine-Grained Soils[J]. Can Geotech J, 1980(4):473-486.
[24] 徐光兴, 姚令侃, 高召宁, 等. 边坡动力特性与动力响应的大型振动台模型试验研究[J]. 岩石力学与工程学报, 2008, 27(3):624-632. Xu Guangxing, Yao Lingkan, Gao Zhaoning, et al. Large-Scale Shaking Table Model Test Study on Dynamic Characteristics and Dynamic Responses of Slope[J]. Chinese Journal of Rock Mechanics and Engineering, 2008, 27(3):624-632.
[25] 胡高建, 杨天鸿, 张飞.抚顺西露天矿南帮边坡破坏机理及内排压脚措施[J]. 吉林大学学报(地球科学版), 2019, 49(4):1082-1092. Hu Gaojian, Yang Tianhong, Zhang Fei. Failure Mechanism and Internal Dumping Control Measures of South Slope in Fushun West Open-Pit Coal Mine[J]. Journal of Jilin University (Earth Science Edition), 2019, 49(4):1082-1092.
[1] 张琦, 杨忠年, 时伟, 凌贤长, 涂志斌. 冻融循环下初始含水率对非饱和膨胀土剪切特性试验[J]. 吉林大学学报(地球科学版), 2021, 51(5): 1544-1550.
[2] 徐新木, 张耀平, 付玉华, 雷大星, 邹雄刚. 冻融循环下含节理类岩石试样剪切破坏特性[J]. 吉林大学学报(地球科学版), 2021, 51(2): 483-494.
[3] 陈祥忠, 王斌. 基于岩石物理模型的裂缝型储层AVOA反演方法[J]. 吉林大学学报(地球科学版), 2021, 51(1): 266-276.
[4] 康立明, 任战利, 张林, 魏斌, 王武兵. 鄂尔多斯盆地Y区块长6致密油层裂缝特征[J]. 吉林大学学报(地球科学版), 2020, 50(4): 979-990.
[5] 苗长盛, 徐文, 刘玉虎, 谢荣祥. 松辽盆地南部火山岩储层特征[J]. 吉林大学学报(地球科学版), 2020, 50(2): 635-643.
[6] 赵汉卿, 陈晓明, 李超, 吴穹螈, 王迪. 渤海湾盆地垦利L油田古近系沙三上段优质储层物性控制因素[J]. 吉林大学学报(地球科学版), 2020, 50(2): 653-661.
[7] 罗腾, 冯晅, 郭智奇, 刘财, 刘喜武. 基于模拟退火粒子群优化算法的裂缝型储层各向异性参数地震反演[J]. 吉林大学学报(地球科学版), 2019, 49(5): 1466-1476.
[8] 樊冬艳, 孙海, 姚军, 李华锋, 严侠, 张凯, 张林. 增强型地热系统不同注采井网参数分析[J]. 吉林大学学报(地球科学版), 2019, 49(3): 797-806.
[9] 李欢, 王清斌, 庞小军, 冯冲, 刘晓健. 渤海湾盆地辽东凹陷旅大29构造沙二段近源砂砾岩体优质储层形成机理[J]. 吉林大学学报(地球科学版), 2019, 49(2): 294-309.
[10] 邓馨卉, 刘财, 郭智奇, 刘喜武, 刘宇巍. 济阳坳陷罗家地区各向异性页岩储层全波场地震响应模拟及分析[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1231-1243.
[11] 张冰, 郭智奇, 徐聪, 刘财, 刘喜武, 刘宇巍. 基于岩石物理模型的页岩储层裂缝属性及各向异性参数反演[J]. 吉林大学学报(地球科学版), 2018, 48(4): 1244-1252.
[12] 潘保芝, 刘文斌, 张丽华, 郭宇航, 阿茹罕. 一种提高储层裂缝识别准确度的方法[J]. 吉林大学学报(地球科学版), 2018, 48(1): 298-306.
[13] 张焕旭, 陈世加, 路俊刚, 刘超威, 陈娟, 李勇, 徐坤. “膨胀力”作用下致密砂岩储层石油运聚特征[J]. 吉林大学学报(地球科学版), 2017, 47(5): 1341-1351.
[14] 张泽, 周泓, 秦琦, 邴慧, 武俊杰, 周攀峰. 冻融循环作用下黄土的孔隙特征试验[J]. 吉林大学学报(地球科学版), 2017, 47(3): 839-847.
[15] 张博为, 付广, 张居和, 胡明, 刘峻桥, 王浩然. 油源断裂转换带裂缝发育及其对油气控制作用——以冀中坳陷文安斜坡议论堡地区沙二段为例[J]. 吉林大学学报(地球科学版), 2017, 47(2): 370-381.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] 李昭阳,汤 洁,孙平安,林年丰. 松嫩平原西南部土地利用动态变化的分形研究[J]. J4, 2006, 36(02): 250 -0258 .
[2] 柳雁玲,佴 磊,刘永平. 和龙沿江公路傍山隧道偏压特征分析[J]. J4, 2006, 36(02): 240 -0244 .
[3] 崔 健,林年丰,汤 洁,姜玲玲,蔡 宇. 霍林河流域下游地区土地利用变化动态及趋势预测[J]. J4, 2006, 36(02): 259 -0264 .
[4] 张凤君,李 卿,马玖彤,于广菊. 膜蒸馏处理糠醛废水的实验研究[J]. J4, 2006, 36(02): 270 -0273 .
[5] 李 秉 成. 陕西富平全新世古气候的初步研究[J]. J4, 2005, 35(03): 291 -0295 .
[6] 和钟铧,杨德明,王天武,郑常青. 冈底斯带巴嘎区二云母花岗岩SHRIMP锆石U-Pb定年[J]. J4, 2005, 35(03): 302 -0307 .
[7] 旷理雄,郭建华,梅廉夫,童小兰,杨丽. 从油气勘探的角度论博格达山的隆升[J]. J4, 2005, 35(03): 346 -0350 .
[8] 景建恩,魏文博,梅忠武. 塔河油田奥陶系岩溶洞穴发育特征及其与油气的关系[J]. J4, 2005, 35(05): 622 -625 .
[9] 张凤旭,孟令顺,张凤琴,杨 恕,赵承民. 重力位余弦变换谱基本特征[J]. J4, 2006, 36(02): 274 -0278 .
[10] 邢学文,胡光道. 模糊逻辑法在秦岭-松潘成矿区金矿潜力预测中的应用[J]. J4, 2006, 36(02): 298 -0304 .